Про ванную комнату - Потолок. Ванные. Кафель. Оборудование. Ремонт. Сантехника

Автоматизация управления электрической печью. Автоматическое регулирование температурного режима в электрических печах Управление печью сопротивления

Мощность современных электропечей сопротивления колеблется от долей киловатта до нескольких мегаватт. Печи мощностью более 20 кВт обычно выполняют трехфазными и подключают к сетям напряжением 120, 380, 660 В непосредственно или через печные трансформаторы. Коэффициент мощности печей сопротивления близок к 1, распределœение нагрузки по фазам в трехфазных печах равномерное.

Применяемое в ЭПС электрическое оборудование подразделяется на силовое, аппаратуру управления, измерительную и пирометрическую.

К силовому оборудованию относятся трансформаторы, понижающие и регулировочные автотрансформаторы, блоки питания, приводящие в действие механизмы электроприводов, силовая коммутационная и защитная аппаратура, рубильники, контакторы, магнитные пускатели, автоматические выключатели и плавкие предохранители.

Большинство печей выполняют на напряжение питающей сети: они не нуждаются в трансформаторах и автотрансформаторах. Применение понижающих печных трансформаторов позволяет увеличить рабочие токи и применять для изготовления нагревателœей проводники большего сечения, что повышает их прочность и надежность,

Все промышленные печи сопротивления работают в режиме автоматического регулирования температуры, что позволяет приводить в действие мощность печи с требуемым температурным режимом, а это, в свою очередь, ведет к. снижению удельного расхода электроэнергии по сравнению с ручным регулированием. Регулирование рабочей температуры в электрических печах сопротивления производится изменением поступающей в печь мощности.

Регулирование подводимой к печи мощности должна быть произведено несколькими способами: периодическое отключение и подключение печи к питающей сети (двухпозиционное регулирование); переключение печи со звезды на треугольник, либо с последовательного соединœения на параллельное (трехпозиционное регулирование).

При двухпозиционном позиционном регулировании (рис. 4.40) показаны функциональная схема включения печи, изменение температуры и мощности), температура в рабочем пространстве ЭПС контролируется термопарами, термометрами сопротивления, фотоэлементами. Включение печи производится регулятором температуры посредством подачикоманды на катушку выключателя КВ.

Температура в печи растет до значения , в данный момент терморегулятор отключает печь.

Рис. 4.40. Функциональная схема включения печи, изменение

температуры и мощности при двухпозиционном регулировании:

ЭП - электропечь; В - выключатель;

РТ - регулятор температуры; КВ - катушка выключателя;

1 - температура печи; 2 - температура нагреваемого тела;

3 - средняя потребляемая печью мощность

За счёт поглощения теплоты нагреваемым телом и потерь в окружающее пространство температура снижается до , после чего РТ вновь дает команду на подключение пе­чи к сети.

Глубина пульсаций температуры зависит от чувствительности РТ, инœерционности печи и чувствительности датчика температуры.

При трехпозиционном регулировании подводимая к печи мощность меняется при переключении нагревателœей со звезды на треугольник. Регулирование температуры этим методом позволяет снизить мощность, потребляемую из сети.

С энергетической точки зрения такой метод регулирования достаточно эффективен, так как при нем не оказывается вредного влияния на питающую сеть.

Регулирование мощности печи изменением подводимого напряжения должна быть осуществлено несколькими способами:

Применение регулировочных трансформаторов и автотрансформаторов с плавным бесконтактным регулированием под нагрузкой;

Использование потенциал-регуляторов;

Включение в цепь нагревателœей дополнительных сопротивлений в виде дросселœей и реостатов;

Импульсное регулирование с использованием тиристорных регуляторов.

Использование трансформаторов с плавным бесконтактным регулированием под нагрузкой, автотрансформаторов и потенциал-регуляторов связано со значительными капитальными затратами, наличием дополнительных потерь и потреблением реактивной мощности. Этот способ применяется редко.

Включение в цепь нагревателœей дополнительного индуктивного или активного сопротивления связано с дополнительными потерями и потреблением реактивной мощности, что также ограничивает применение этого способа регулирования.

Импульсное регулирование на базе тиристорных регуляторов осуществляется с помощью полупроводниковых вентилей, периодичность работы которых выбирают исходя из тепловой инœерционности электропечи.

Можно выделить три базовых способа импульсного регулирования мощности, потребляемой от сети переменного тока:

1. Импульсное регулирование при частоте коммутации ( - частота тока питающей сети) с изменением момента отпирания тиристора принято называть фазоимпульсным или фазным (кривые а).

2. Импульсное регулирование с повышенной частотой коммутации (кривые б).

3. Импульсное регулирование с пониженной частотой коммутации (кривые в).

Путем импульсного регулирования можно получить плавное регулирование мощности в широких пределах почти без дополнительных потерь, обеспечивая соответствие мощности, потребляемой печью, и мощности, подводимой из сети.

На рис. 4.41 показана схема импульсного регулирования мощности печи.

Рис. 4.41. Схема импульсного регулирования мощности печи:

ЭП - электропечь; РТ - теплорегулятор; УТ - блок управления тиристорным регулятором; ТР - тиристорный регулятор

Параметров печей сопротивления - понятие и виды. Классификация и особенности категории "Параметров печей сопротивления" 2017, 2018.

1 Цель работы

1.1 Ознакомиться с устройством электрической печи сопротивления, электрическими нагревателями, режимом работы электропечи и электрической схемой управления.

2 Порядок выполнения работы

2.1 Записать технические (пас­портные) данные электрической печи и электроизмерительных приборов.

2.2 Ознакомиться с устройством электрической печи сопротивле­ния и назначением отдельных ее частей.

2.3 Ознакомиться с электрической схемой управления режимами работы электрической печи сопротивления.

2.4 Собрать электрическую схему для проведения опыта.

2.5 Провести опыт по определению энергетических показателей работы электрической печи сопротивления.

2.6 Составить отчет о проделанной работе.

3 Описание лабораторной установки

Лабораторная установка для ознакомления с устройством, принципом действия и назначе­нием отдельных частей электрической печи сопротивления должна состоять из электрической печи сопротивления камерного типа мо­дели ОКБ-194А или модели Н-15 с нихромовыми нагревателями, предназначенными для термической обработки металлов при ин­дивидуальном и мелкосерийном производствах. Кроме того, дол­жен быть исходный материал для термической обработки; для этого рекомендуется заготовить детали, требующие такой обработки. Должны быть известны основные параметры температурных ре­жимов.

В электрическую печь закладываются термопары для контроля температуры. Установка должна иметь устройство для автомати­ческого регулирования температуры и располагать набором изме­рительных приборов и регуляторов температуры нагрева исходно­го материала.

В помещении, где проводятся замятия, должны быть развешены плакаты с изображением электропечей различных типов и конст­рукций, электрических принципиальных схем управления электропечными установками электронагрева сопротивлением.

4 Краткие теоретические сведения

Электрические печи сопротив­ления, где электрическая энергия превращается в тепловую через жидкие или твердые тела, бывают прямого и косвенного действия. В печах прямого действия нагреваемое тело непосредственно включается в сеть (рис.1) и нагревается протекающим через него током.

Рисунок 1 - Принципиальная схема установки прямого нагрева металлической заготовки: 1 – нагреваемая заготовка; 2 - трансформатор

В печах косвенного действия тепло выделяется в специальных нагревательных элементах и передается нагреваемому телу лучеиспусканием, теплопроводностью или конвекцией. Печи сопротивления и аппараты прямого нагрева применяются для нагрева цилиндрических изделий (прутков, труб), а косвенного нагрева для термической обработки изделий и материалов, а также для нагрева заготовок под ковку и штамповку.

Нагрев исходного материала в электрических печах сопротивления, как правило, производится до определенной (заданной) температуры. После периода нагрева следует период выдержки, необходимый для выравнивания температуры. Измерение температуры нагрева и контроль за ходом технологического процесса нагрева может производиться визуально и автоматически при помощи автоматических регуляторов по двухпозиционному методу (периодическое включение и отключение печи).

На рис.2 приведена принципиальная электрическая схема управления электрической печью при двухпозиционном регулировании.

Рисунок 2 - Принципиальная электрическая схема печи при двухпозиционном управлении

Схема предусматривает ручное и автоматическое управление. Если переключатель П поставить в положение 1 , то схема будет настроена на ручное управление, а положение 2 переключателя переводит схему на автоматическое управление. Включение и отключение нагревательных элементов НЭ производится терморегулятором TP , контакты которого в зависимости от температуры в печи замыкают или размыкают цепь катушки контактора Л непосредственно или через промежуточное реле РП . Регулирование температуры нагрева может осуществляться изменением мощности печи – переключением нагревателей с треугольника на звезду (рис. 3, а), при этом мощность печи уменьшается в три раза, а для однофазных печей переключением с параллельного соединения нагревателей на последовательное (рис. 3, б).

Рисунок 3 - Электрическая схема переключения нагревателей печи: а – с треугольника на звезду; б – с параллельного на последовательное

В электрических печах сопротивления в качестве нагревательных элементов применяются материалы с большим удельным сопротивлением. Эти материалы не должны окисляться, а образовавшиеся на поверхности окислы не должны лопаться и отскакивать при колебаниях температуры.

Наибольшее распространение при нагревании исходных материалов получили камерные печи благодаря их универсальности, они выполняются в виде прямоугольной камеры с огнеупорной футеровкой и теплоизоляцией, перекрытые подом и заключенные в металлический кожух. Печи серии Н выполняются с ленточными или проволочными нагревателями, уложенными на керамические полочки. Печи типа ОКБ-194 (рис. 4 и рис. 5) изготовляются двухкамерными, верхняя камера оборудована карборундовыми нагревателями, а нижняя- нихромовыми.

Рисунок 4 - Камерная электропечь типа ОКБ-194: 1 – механизм подъема дверцы верхней камеры; 2 – ролики дверцы нижней камеры; 3 – теплоизоляция; 4 – верхняя камера; 5 – нижняя камера; 6 – подовая плита

Методические указания

Технические (паспортные) данные электрической печи, аппаратуры управления, контроля и электроизмерительных приборов записываются по табличным данным оборудования. В дальнейшем эти сведения должны быть отражены в отчете по работе. Технические данные оборудования являются их номинальными параметрами, поэтому во время работы необходимо придерживаться указанных в паспортах значений тока, напряжений, мощностей и других величин.

При ознакомлении с электрической печью сопротивления следует обратить внимание на ее конструкцию и устройство нагревательных элементов и их расположение в печи. Рекомендуется измерить сопротивление нагревательных элементов с помощью тестера. Снять эскиз загрузочного устройства, обратить внимание на его привод. Выяснить, какие температурные режимы должны соблюдаться при термической обработке исходного материала (деталей) во время проведения опыта. Уточнить, какими приборами будет измеряться температура нагрева, где будут устанавливаться термопары. Электрическая схема соединений электропечи и измерительных приборов для проведения опыта приведена на рис. 5.

Учащиеся должны подобрать электроизмерительные приборы, аппаратуру управления, выполнить необходимые соединения и, перед тем как включить схему в работу, дать руководителю занятия для проверки.

Рисунок 5 - Принципиальная электрическая схема печи типа ОКБ-194: а – электрическая схема; б – диаграмма работы универсального переключателя УП

После проверки электрической схемы соединений и получения разрешения и задания от руководителя занятия на термическую обработку исходного материала учащиеся закладывают в загрузочное устройство исходный материал (детали) и включают печь работу. Во время проведения опыта надо внимательно наблюдать за показаниями электроизмерительных и теплоизмерительных приборов (амперметром, вольтметром, ваттметром, вторичным прибором термопары) и фиксировать их показания через равные промежутки времени. Данные наблюдений и последующих расчетов занести в таблицу 1. При достижении предельной температуры (согласно заданию) и наличии регулятора будет осуществлено регулирование температуры. Необходимо проследить, как работает регулятор, и заметить время перерыва подачи электроэнергии. По окончании опыта определить расход электроэнергии и коэффициент мощности установки.

Потребление А электрической энергии определяется по показанию счетчика, а в том случае, когда он в схеме отсутствует, можно воспользоваться величинами мощности Р (по показанию ваттметра) и продолжительности t работы:

А = Pt. (1)

Коэффициент мощности установки:

cosφ = Р/( UI). (2)

Таблица 1 – Данные опытов

Отчет по работе составляется по форме, указанной в приложении 1. В отчете необходимо привести паспортные данные машины аппаратов и измерительных приборов, кратко описать конструкцию электрической печи сопротивления, режим термообработки исходного материала, привести эскиз загрузочного устройства, расположения электронагревательных элементов, электрическую схему соединений приборов и аппаратов, которая использовалась при проведении опыта. Записать результаты наблюдений и расчетов. Описать способы регулирования температурных режимов в процессе термообработки. Ответить на контрольные вопросы.

В. Крылов

В настоящее время тиристоры находят широкое применение в различных устройствах автоматического контроля, сигнализации и управления. Тиристор представляет собой управляемый полупроводниковый диод, которому свойственны два устойчивых состояния: открытое, когда прямое сопротивление тиристора весьма мало и ток в его цепи зависит в основном от напряжения источника питания и сопротивления нагрузки, и закрытое, когда его прямое сопротивление велико и ток составляет единицы миллиампер.

На рис. 1 показана типовая вольтамперная характеристика тиристора, где участок О А соответствует закрытому состоянию тиристора, а участок БВ - открытому.

При отрицательных напряжениях тиристор ведет себя как обычный диод (участок ОД).

Если увеличивать прямое напряжение на закрытом тиристоре при токе управляющего электрода, равном нулю, то при достижении величины Uвкл тиристор откроется. Такое переключение тиростора называют переключением по аноду. Работа тиристора при этом аналогична работе неуправляемого полупроводникового четырехслойного диода - динистора.

Наличие управляющего электрода позволяет открывать тиристор при анодном напряжении, меньшем Uвкл. Для этого необходимо по цепи управляющий электрод - катод пропустить ток управления Iу. Вольтамперная характеристика тиристора для этого случая показана на рис. 1 пунктиром. Минимальный ток управления, необходимый для открывания тиристора, называется током спрямления Iспр. Ток спрямления сильно зависит от температуры. В справочниках он указывается при определенном анодном напряжении. Если за время действия тока управления анодный ток превысит значение тока выключения Iвыкл, то тиристор останется открытым и по окончании действия тока управления; если же этого не произойдет, то тиристор снова закроется.

При отрицательном напряжении на аноде тиристора подача напряжения на его управляющий электрод не допускается. Недопустимо также на управляющем электроде отрицательное (относительно катода) напряжение, при котором обратный ток управляющего электрода превышает несколько миллиампер.

Открытый тиристор можно перевести в закрытое состояние, только снизив его анодный ток до величины, меньшей Iвыкл. В устройствах постоянного тока для этой цели используются специальные гасящие цепочки, а в цепи переменного тока тиристор закрывается самостоятельно в момент перехода величины анодного тока через нуль.

Это является причиной наиболее широкого применения тиристоров в цепях переменного тока. Все рассматриваемые ниже схемы имеют отношение только к тиристорам, включенным в цепь переменного тока.

Для обеспечения надежной работы тиристора источник управляющего напряжения должен удовлетворять определенным требованиям. На рис. 2 показана эквивалентная схема источника управляющего напряжения, а на рис. 3 - график, с помощью которого можно определить требования к его нагрузочной прямой.


На графике линии А и Б ограничивают зону разброса входных вольтамперных характеристик тиристора, представляющих собой зависимости напряжения на управляющем электроде Uу от тока этого электрода Iу при разомкнутой анодной цепи. Прямая В определяет минимальное напряжение Uу, при котором открывается любой тиристор данного типа при минимальной температуре. Прямая Г определяет минимальный ток Iу, достаточный для открывания любого тиристора данного типа при минимальной температуре. Каждый конкретный тиристор открывается в определенной точке своей входной характеристики. Заштрихованная зона является геометрическим местом таких точек для всех тиристоров данного типа, удовлетворяющих техническим условиям. Прямые Д и Е определяют максимально допустимые значения напряжения Uу и тока Iу соответственно, а кривая К - максимально допустимое значение мощности, рассеиваемой на управляющем электроде. Нагрузочная прямая Л источника управляющего сигнала проведена через точки, определяющие напряжение холостого хода источника Еу.хх и его ток короткого замыкания Iу.кз= Eу.хх/Rвнутр, где Rвнутр- внутреннее сопротивление источника. Точка S пересечения нагрузочной прямой Л с входной характеристикой (кривая М) выбранного тиристора должна находиться в области, лежащей между заштрихованной зоной и линиями А, Д, К, Е и Б.

Эта область носит название предпочтительной области открывания. Горизонтальная прямая Н определяет наибольшее напряжение на управляющем переходе, при котором не открывается ни один тиристор данного типа при максимально допустимой температуре. Таким образом, эта величина, составляющая десятые доли вольта, определяет максимально допустимую амплитуду напряжения помехи в цепи управления тиристором.

После открывания тиристора цепь управления не влияет на его состояние, поэтому управление тиристором может осуществляться импульсами небольшой длительности (десятки или сотни микросекунд), что позволяет упростить схемы управления и снизить мощность, рассеиваемую на управляющем электроде. Длительность импульса, однако, должна быть достаточной для нарастания анодного тока до величины, превышающей ток выключения Iвыкл при различном характере нагрузки и режиме работы тиристора.

Сравнительная простота устройств управления при работе тиристоров в цепях переменного тока обусловила широкое применение этих приборов в качестве регулирующих элементов в устройствах стабилизации и регулирования напряжения. Среднее значение напряжения на нагрузке при этом регулируют изменением момента подачи (то есть фазы) управляющего сигнала относительно начала полупериода питающего напряжения. Частота следования управляющих импульсов в таких схемах должна быть синхронизирована с частотой сети.

Существует несколько методов управления тиристорами, из которых следует отметить амплитудный, фазовый и фазо-импульсный.

Амплитудный метод управления заключается в том, что на управляющий электрод тиристора подают положительное напряжение, изменяющееся по величине. Тиристор открывается в тот момент, когда это напряжение становится достаточным для протекания через управляющий переход тока спрямления. Изменяя напряжение на управляющем электроде, можно изменять момент открывания тиристора. Простейшая схема регулятора напряжения, построенная по этому принципу, приведена на рис. 4.


В качестве управляющего напряжения здесь используется часть анодного напряжения тиристора, то есть напряжения положительного полупериода сети. Резистором R2 изменяют момент открывания тиристора Д1 и, следовательно, среднее значение напряжения на нагрузке. При полностью введенном резисторе R2 напряжение на нагрузке минимально. Диод Д2 защищает управляющий переход тиристора от обратного напряжения. Следует обратить внимание на то, что цепь управления подключена не непосредственно к сети, а параллельно тиристору. Сделано это для того, чтобы открытый тиристор шунтировал цепь управления, не допуская бесполезного рассеивания мощности на ее элементах.

Основными недостатками рассматриваемого устройства являются сильная зависимость напряжения на нагрузке от температуры и необходимость индивидуального подбора резисторов для каждого экземпляра тиристора. Первое объясняется температурной зависимостью тока спрямления тиристоров, второе - большим разбросом их входных характеристик. Кроме того, устройство способно регулировать момент открывания тиристора только в течение первой половины положительного полупериода напряжения сети.

Управляющее устройство, схема которого приведена на рис. 5, позволяет расширить диапазон регулирования до 180°, а включение тиристора в диагональ выпрямительного моста - регулировать напряжение на нагрузке в течение обоих полупериодов напряжения сети.

Конденсатор С1 заряжается через резисторы R1 и R2 до напряжения, при котором через управляющий переход тиристора протекает ток, равный току спрямления. При этом тиристор открывается, пропуская ток через нагрузку. Благодаря наличию конденсатора напряжение на нагрузке меньше зависит от колебаний температуры, но тем не менее и этому устройству присущи те же недостатки.

При фазовом методе управления тиристорами с помощью фазовращательного моста изменяют фазу управляющего напряжения относительно напряжения на аноде тиристора. На рис. 6 приведена схема однополупериодного регулятора напряжения, в котором изменение напряжения на нагрузке осуществляется резистором R2, включенным в одно из плеч моста, с диагонали которого напряжение поступает на управляющий переход тиристора.


Напряжение на каждой половине обмотки III управления должно быть приблизительно 10 в. Остальные параметры трансформатора определяются напряжением и мощностью нагрузки. Основным недостатком фазового метода управления является малая крутизна управляющего напряжения, из-за чего стабильность момента открывания тиристора получается невысокой.

Фазо-импульсный метод управления тиристорами отличается от предыдущего тем, что с целью повышения точности и стабильности момента открывания тиристора на его управляющий электрод подают импульс напряжения с крутым фронтом. Этот метод получил в настоящее время наибольшее распространение. Схемы, реализующие этот метод, отличаются большим разнообразием.

На рис. 7 приведена схема одного из самых простых устройств, использующих фазо-импульсный метод управления тиристором.

При положительном напряжении на аноде тиристора Д3 конденсатор С1 заряжается через диод Д1 и переменный резистор R1. Когда напряжение на конденсаторе достигнет напряжения включения динистора Д2, он открывается и конденсатор разряжается через управляющий переход тиристора. Этот импульс разрядного тока открывает тиристор Д3 и через нагрузку начинает протекать ток. Изменяя резистором R1 ток заряда конденсатора, можно изменять момент открывания тиристора в пределах полупериода напряжения сети. Резистор R2 исключает самооткрывание тиристора Д3 за счет токов утечки при повышенной температуре. По техническим условиям при работе тиристоров в ждущем режиме установка этого резистора обязательна. Приведенная на рис. 7 схема не нашла широкого применения из-за большого разброса величины напряжения включения динисторов, доходящего до 200%, и значительной зависимости напряжения включения от температуры.

Одной из разновидностей фазо-импульеного метода управления тиристорами является получившее в настоящее время наибольшее распространение так называемое вертикальное управление. Оно заключается в том, что на входе генератора импульсов производится сравнение (рис. 8) постоянного напряжения (1) и напряжения, изменяющегося по величине (2). В момент равенства этих напряжений генерируется импульс (3) управления тиристором. Переменное по величине напряжение может иметь синосоидальную, треугольную или пилообразную (как показано на рис. 8) форму.


Как видно из рисунка, изменение момента возникновения управляющего импульса, то есть сдвиг его фазы, может производиться тремя различными способами:

изменением скорости нарастания переменного напряжения (2а),

изменением его начального уровня (2б) и

изменением величины постоянного напряжения (1а).

На рис. 9 показана структурная схема устройства, реализующего вертикальный метод управления тиристорами.

Как и любое другое устройство фазо-импульсного управления, оно состоит из фазосдвигающего устройства ФСУ и генератора импульсов ГИ. Фазосдвигающее устройство, в свою очередь, содержит входное устройство ВУ, воспринимающее напряжение управления Uу, генератор переменного (по величине) напряжения ГПН и сравнивающее устройство СУ. В качестве названных элементов могут быть использованы самые различные устройства.

На рис. 10 приведена принципиальная схема устройства управления тиристором (Д5), включенным последовательно с мостовым выпрямителем (Д1 - Д4).


Устройство состоит из генератора пилообразного напряжения с транзисторным коммутатором (Т1), триггера Шмитта (Т2, Т3) и выходного ключевого усилителя (Т4). Под действием напряжения, снимаемого с синхронизирующей обмотки III трансформатора Тр1, транзистор Т1 закрыт. При этом конденсатор С1 заряжается через резисторы R3 и R4. Напряжение на конденсаторе возрастает по экспоненциальной кривой, начальный участок которой с некоторым приближением можно считать прямолинейным (2, см. рис. 8).

При этом транзистор Т2 закрыт, а Т3 открыт. Ток эмиттера транзистора Т3 создает на резисторе R6 падение напряжения, которое определяет уровень срабатывания триггера Шмитта (1 на рис. 8). Сумма напряжений на резисторе R6 и открытом транзисторе Т3 меньше, чем напряжение на стабилитроне Д10, поэтому транзистор Т4 закрыт. Когда напряжение на конденсаторе С1 достигает уровня срабатывания триггера Шмитта, транзистор Т2 открывается, а Т3 закрывается. Транзистор T4 при этом открывается и на резисторе R10 появляется импульс напряжения, открывающий тиристор Д5 (импульс 3 на рис. 8). В конце каждого полупериода напряжения сети транзистор T1 открывается током, протекающим через резистор R2. Конденсатор С1 при этом разряжается практически до нуля и устройство управления возвращается в исходное состояние. Тиристор закрывается в момент перехода амплитуды анодного тока через нуль. С началом следующего полупериода цикл работы устройства повторяется.

Изменяя сопротивление резистора R3, можно изменять ток заряда конденсатора С1, то есть скорость нарастания напряжения на нем, а значит, и момечт появления открывающего тиристор импульса. Заменив резистор R3 транзистором, можно автоматически регулировать напряжение на нагрузке. Таким образом, в этом устройстве использован первый из названных выше способов сдвига фазы управляющих импульсов.

Небольшое изменение схемы, показанное на рис. 11, позволяет получить регулирование по второму способу. В этом случае конденсатор С1 заряжается через постоянный резистор R4 и скорость нарастания пилообразного напряжения во всех случаях одинакова. Но при открывании транзистора T1 конденсатор разряжается не до нуля, как в предыдущем устройстве, а до напряжения управления Uу.
Следовательно, и заряд конденсатора в очередном цикле начнется с этого уровня. Изменяя напряжение Uу, регулируют момент открывания тиристора. Диод Д11 отключает источник напряжения управления от конденсатора во время его заряда.


Выходной каскад на транзисторе T4 обеспечивает необходимое усиление по току. Используя в качестве нагрузки импульсный трансформатор, можно одновременно управлять несколькими тиристорами.

В рассматриваемых устройствах управления к управляющему переходу тиристора напряжение приложено в течение отрезка времени от момента равенства постоянного и пилообразного напряжений до окончания полупериода напряжения сети, то есть до момента разряда конденсатора C1. Уменьшить длительность управляющего импульса можно включением дифференцирующей цепочки на входе усилителя тока, выполненного на транзисторе Т4 (см. рис. 10).

Одним из вариантов вертикального метода управления тиристорами является число-импульсный метод. Его особенность состоит в том, что на управляющий электрод тиристора подают не один импульс, а пачку коротких импульсов. Длительность пачки равна длительности управляющего импульса, показанного на рис. 8.

Частота следования импульсов в пачке определяется параметрами генератора импульсов. Число-импульсный метод управления обеспечивает надежное открывание тиристора при любом характере нагрузки и позволяет уменьшить мощность, рассеиваемую на управляющем переходе тиристора. Кроме этого, если на выходе устройства включен импульсный трансформатор, возможно уменьшить его размеры и упростить конструкцию.

На рис. 12 приведена схема управляющего устройства, использующего число-импульсный метод.


В качестве узла сравнения и генератора импульсов здесь применен балансный диодно-регенеративный компаратор, состоящий из схемы сравнения на диодах Д10, Д11 и собственно блокинг-генератора, собранного на транзисторе Т2. Диоды Д10, Д11 управляют работой цепи обратной связи блокинг-генератора.

Как и в предыдущих случаях, при закрытом транзисторе Т1 начинается заряд конденсатора С1 через резистор R3. Диод Д11 открыт напряжением Uу, а диод Д10 закрыт. Таким образом, цепь обмотки IIa положительной обратной связи блокинг-генератора разомкнута, а цепь обмотки IIб отрицательной обратной связи замкнута и транзистор Т2 закрыт. Когда напряжение на конденсаторе С1 достигнет напряжения Uу, диод Д11 закроется, а Д10 откроется. Цепь положительной обратной связи окажется замкнутой, и блокинг-генератор начнет вырабатывать импульсы, которые с обмотки I трансформатора Тр2 будут поступать на управляющий переход тиристора. Генерация импульсов будет продолжаться до конца полупериода напряжения сети, когда откроется транзистор T1 и конденсатор С1 разрядится. Диод Д10 при этом закроется, а Д11 откроется, блокинг-процесс прекратится, и устройство вернется в исходное состояние. Изменяя напряжение управления Uу, можно изменять момент начала генерации относительно начала полупериода и, следовательно, момент открывания тиристора. Таким образом, в данном случае используется третий способ сдвига фазы управляющих импульсов.

Применение балансной схемы узла сравнения обеспечивает температурную стабильность его работы. Кремниевые диоды Д10 и Д11 с малым обратным током позволяют получить высокое входное сопротивление сравнивающего узла (около 1 Мом). Поэтому он не оказывает практически никакого влияния на процесс заряда конденсатора С1. Чувствительность узла весьма высока и составляет несколько милливольт. Резисторы R6, R8, R9 и конденсатор С3 определяют температурную стабильность рабочей точки транзистора Т2. Резистор R7 служит для ограничения коллекторного тока этого транзистора и улучшения формы импульса блокинг-генератора. Диод Д13 ограничивает выброс напряжения на коллекторной обмотке III трансформатора Тр2, возникающий при закрывании транзистора. Импульсный трансформатор Тр2 можно выполнить на ферритовом кольце 1000НН типоразмера К15Х6Х4,5. Обмотки I и III содержат по 75, а обмотки II а и II б - по 50 витков провода ПЭВ-2 0,1.

Недостатком этого устройства управления является сравнительно низкая частота следования импульсов (примерно 2 кгц при длительности импульса 15 мксек). Увеличить частоту можно, например, уменьшив сопротивление резистора R4, через который разряжается конденсатор С2, но при этом несколько ухудшается температурная стабильность чувствительности сравнивающего узла.

Число-импульсный метод управления тиристорами можно использовать и в рассмотренных выше (рис. 10 и 11) устройствах, поскольку при определенном выборе номиналов элементов (С1, R4- R10, см. рис. 10) триггер Шмитта при напряжении на конденсаторе С1, превышающем уровень срабатывания триггера, генерирует не одиночный импульс, а последовательность импульсов. Их длительность и частота следования определяются параметрами и режимом триггера. Такое устройство получило название «мультивибратор с разрядным триггером».

В заключение следует отметить, что значительное схемное упрощение устройств управления тиристорами при сохранении высоких качественных показателей может быть достигнуто с помощью однопереходных транзисторов.

Яров В. М.
Источники питания электрических печей сопротивления
Учебное пособие

Печатается по решению Редакционно-издательского совета Чувашского государственного университета им, И. И. Ульянова

Чувашский государственный университет
1982 г.

Учебное пособие предназначено для студентов специальности «Электротермические установки», выполняющих курсовую работу по курсу «Автоматическое управление электротермических установок» и дипломное проектирование с углубленной проработкой источников питания для электропечей сопротивления.

В пособии анализируются особенности работы тиристорных регуляторов переменного напряжения при работе на различную нагрузку. Описывается принцип действия магнитных усилителей и параметрических источников тока. Приводится описание конкретных схем управления источников питания.

Отв. редактор: докт. техн. наук; профессор Ю. М. МИРОНОВ.

Введение

Глава I. Принципы регулирования мощности электропечей сопротивления
1.1. Характеристики электропечи сопротивления как нагрузки источника питания
1.2. Способы регулирования мощности электропечи сопротивления
1.2.1. Регулирование питающего напряжения
1.2.2. Переключение нагревателей печи
1.23. Регулировалие мощности печи за счет изменения формы кривой тока

Глава 2. Магнитные усилители с самонасыщением
2.1. Работа на активную нагрузку
2.2. Работа магнитного усилителя на активно-индуктивную нагрузку переменного тока

Глава 3. Параметрический источник тока
3.1. Принцип действия
3.2. Способы регулирования тока нагрузки

Глава 4. Фазоимпульсный регулятор переменного напряжения
4.1. Принцип действия регулятора
4.2. Регулятор с активной нагрузкой
4.3. Анализ при активио-индуктивиой нагрузке
4.4. Фазоимпульсвый источник с трансформаторной нагрузкой
4.5. Трехфазные регуляторы переменного напряжения
4.6. Системы управления однофазных фазоимпульсных источников питания
4.6.1. Функциональные схемы систем управления
4.6.2. Многоканальные системы управлении
4.6.3. Одноканальные системы управлении
4.7 Система управления трехфазного источника питания

Глава 5. Источники питиния с широтно-импульсным управлением
5.1. Электрический режим источника с активной нагрузкой
5.2. Процессы в трансформаторе при периодическом включении
5.3. Способы включения трансформаторной нагрузки без бросков тока намагничивания
5.4. Особенности включения трехфазного трансформатора
5.5. Системы управления импульсных регуляторов
5.5.1. Требования к системам управления
5.5.2. Системы управления однофазных импульсных регуляторов
5.5.3. Система управления широтно-импульсного регулятора с трансформаторной нагрузкой
5.5.4. Система управления трехфазного регулятора

Глава 6. Влияние регулируемых источников переменного напряжения на питающую сеть
6.1. Сравнение способов регулирования переменного напряжения
6.2. Групповой режим работы регуляторов как способ улучшения энергетических показателей
6.3. Оптимизация способов управления широтио-импульсными регуляторами при групповой нагрузке
6.4. Система управления группой широтно-импульсных регулягоров с равноинтервальным включением
6.5. Повышение коэффициента, мощности в одиночном регуляторе переменного напряжения

Введение

Для того чтобы поддерживать температуру в печи постоянной или менять ее по заданному закону, необходимо иметь возможность изменять ее мощность в широких пределах. Требования к точности регулирования в зависимости от проводимого в печи технологического процесса меняются в широких пределах. Например, прн плавке металлов н нагреве под пластическую деформацию они невысоки - колебания температуры ±25-50° С являются допустимыми; при термообработке эти требования ужесточаются, доходя до ±10-±5° С. Такое качество регулирования может быть обеспечено двух- и трехпознционным регулированием.

Технологический процесс производства полупроводниковых приборов, монокристаллов различных материалов, термообработки стекла и т. п. предъявляет жёсткие требования к качеству регулирования температуры. Обеспечение таких высоких требований (±0,5-±3°С) на уровне 1000-1500°С оказывается возможным только с применением управляемых бесконтактных источников на основе магнитных или тиристорных усилителей.

Разнообразие технологических процессов определяет и разнообразие, источников пнтання. Магнитные усилители практически вытеснены тнрнсторными усилителями, так как последние имеют более высокий КПД, лучшие динамические характеристики и массогабаритные показатели.

В установках контактного нагрева находят применение параметрические источники тока, принцип действия которых основан на явлении резонанса в трехфазной сети.

Мощность применяемых в настоящее время тиристорных источников питания находится в пределах от сотен ватт до сотен киловатт. В пособии приводится сравнение способов управления тиристорами, оцениваются области их применения.

Чебоксары, издательство ЧувГУ, 1982

Существует 2 принципиально различных подхода к управлению мощностью:

1) Непрерывное управление, при котором в печь можно ввести любую требуемую мощность.

2) Ступенчатое управление, при котором в печь можно вводить лишь дискретный ряд мощностей.

Первый требует плавного регулирования напряжения на нагревателях. Такое регулирование может быть осуществлено с помощью любой разновидности силовых усилителей (генератор, тиристорный выпрямитель, ЭМУ). На практике наиболее распространены тиристорные источники питания, построенные по схеме ТРН. Такие регуляторы основаны на свойствах тиристоры, включенного в цепь переменного тока последовательно с активным сопротивлением нагревателя. Тиристорные источники питания содержат встречно-параллельно соединенные тиристоры, снабженные СИФУ.


Угол управления a, а следовательно, и эффективное напряжение на нагрузке зависит от внешнего напряжения, подаваемого на источник. Для снижения влияния отключения питающего напряжения на тепловой режим печи тиристорных источников питания обычно предусматривают отрицательную обратную связь по выходному напряжению. Тиристорные источники питания имеют высокий КПД (до 98%). Коэффициент мощности зависит от глубины регулирования выходного напряжения линейно, при угле a меньше 0 – к М =1, при a = 180° к М = 0. Коэффициент мощности определяется не только сдвигом фаз напряжения и первой гармоники тока, но и величиной высших гармоник тока. Поэтому использование компенсирующих конденсаторов не позволяет сколько нибудь значительно повысить к М.

При втором способе изменяют напряжение на нагревателе, производя переключение в силовых цепях печи. Обычно имеется 2-3 ступени возможного напряжения и мощности нагревателя. Наиболее распространен двухпозиционный способ ступенчатого управления. По этому способу печь либо включают в сеть на ее номинальную мощность, либо полностью отключают от сети. Требуемое значение средней мощности, вводимой в печь обеспечивают, изменяя соотношения времени включенного и отключенного состояния.


Средняя температура в печи соответствует средней мощности вводимой в печь. Резкие изменения мгновенной мощности приводят к колебаниям температуры около среднего уровня. Величина этих колебаний определяется величиной отклонений Р МГНОВ от среднего значения и величиной тепловой инерции печи. В большинстве общепромышленных печей величина тепловой инерции настолько велика, что колебание температуры из-за ступенчатого управления не выходит за пределы требуемого значения точности поддержания температуры. Конструктивно двухпозиционное управление может быть обеспечено либо посредством обычного контактора, либо тиристорного переключателя. Тиристорный переключатель содержит встречно-параллельно


Существуют также трехфазные переключатели. В них используют два блока из встречно-параллельно соединенных тиристоров. Силовые цепи таких переключателей построены по следующей схеме:

Имеются модификации тиристорных переключателей, вообще не использующих контакты.

Тиристорные переключатели более надежны, чем контакторы, они искро- и взрывобезопасны, бесшумны в работе, немного дороже.

Ступенчатое регулирование имеет КПД близкое к 1, к М »1.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!