Про ванную комнату - Потолок. Ванные. Кафель. Оборудование. Ремонт. Сантехника

Перпендикулярные прямые в пространстве. Перпендикулярные прямая и плоскость, признак и условия перпендикулярности прямой и плоскости Пары перпендикулярных прямых

Перпендикулярные прямые фигурируют чуть ли не в каждой геометрической задаче. Иногда перпендикулярность прямых известна из условия, а в других случаях перпендикулярность прямых приходится доказывать. Для доказательства перпендикулярности двух прямых достаточно показать, используя любые геометрические методы, что угол между прямыми равен девяноста градусам.

А как ответить на вопрос «перпендикулярны ли прямые», если известны уравнения, задающие эти прямые на плоскости или в трехмерном пространстве?

Для этого следует воспользоваться необходимым и достаточным условием перпендикулярности двух прямых . Сформулируем его в виде теоремы.

Теорема.

a и b необходимо и достаточно, чтобы направляющий вектор прямой a был перпендикулярен направляющему вектору прямой b .

Доказательство этого условия перпендикулярности прямых основано на определении направляющего вектора прямой и на определении перпендикулярных прямых.

Добавим конкретики.

Пусть на плоскости введена прямоугольная декартова система координат Oxy и заданыуравнения прямой на плоскости некоторого вида, определяющие прямые a и b . Обозначим направляющие векторы прямых а и b как и соответственно. По уравнениям прямых a и b можно определить координаты направляющих векторов этих прямых – получаем и . Тогда, для перпендикулярности прямых a и b необходимо и достаточно, чтобы выполнялось условие перпендикулярности векторов и , то есть, чтобы скалярное произведение векторов и равнялось нулю: .

Итак, a и b в прямоугольной системе координат Oxy на плоскости имеет вид , где и - направляющие векторы прямых a и b соответственно.

Это условие удобно использовать, когда легко находятся координаты направляющих векторов прямых, а также когда прямым a и b соответствуют канонические уравнения прямой на плоскости или параметрические уравнения прямой на плоскости.

Пример.

В прямоугольной системе координат Oxy заданы три точки . Перпендикулярны ли прямые АВ и АС ?

Решение.

Векторы и являются направляющими векторами прямых АВ и АС . Обратившись к статье координаты вектора по координатам точек его начала и конца, вычисляем . Векторы и перпендикулярны, так как . Таким образом, выполняется необходимое и достаточное условие перпендикулярности прямых АВ и АС . Следовательно, прямые АВ и АС перпендикулярны.



Ответ:

да, прямые перпендикулярны.

Пример.

Являются ли прямые и перпендикулярными?

Решение.

Направляющий вектор прямой , а - направляющий вектор прямой . Вычислим скалярное произведение векторов и : . Оно отлично от нуля, следовательно, направляющие векторы прямых не перпендикулярны. То есть, не выполняется условие перпендикулярности прямых, поэтому, исходные прямые не перпендикулярны.

Ответ:

нет, прямые не перпендикулярны.

Аналогично, необходимое и достаточное условие перпендикулярности прямых a и b в прямоугольной системе координат Oxyz в трехмерном пространстве имеет вид , где и - направляющие векторы прямых a и b соответственно.

Пример.

Перпендикулярны ли прямые, заданные в прямоугольной системе координат Oxyz в трехмерном пространстве уравнениями и ?

Решение.

Числа, стоящие в знаменателях канонических уравнений прямой в пространстве, являются соответствующими координатами направляющего вектора прямой. А координатами направляющего вектора прямой, которая задана параметрическими уравнениями прямой в пространстве, являются коэффициенты при параметре. Таким образом, и - направляющие векторы заданных прямых. Выясним, перпендикулярны ли они: . Так как скалярное произведение равно нулю, то эти векторы перпендикулярны. Значит, выполняется условие перпендикулярности заданных прямых.

Ответ:

прямые перпендикулярны.

Для проверки перпендикулярности двух прямых на плоскости существуют другие необходимые и достаточные условия перпендикулярности.

Теорема.

Для перпендикулярности прямых a и b на плоскости необходимо и достаточно, чтобы нормальный вектор прямой a был перпендикулярен нормальному вектору прямой b .

Озвученное условие перпендикулярности прямых удобно использовать, если по заданным уравнениям прямых легко находятся координаты нормальных векторов прямых. Этому утверждению отвечает общее уравнение прямой вида , уравнение прямой в отрезках и уравнение прямой с угловым коэффициентом .



Пример.

Убедитесь, что прямые и перпендикулярны.

Решение.

По заданным уравнениям прямых легко найти координаты нормальных векторов этих прямых. – нормальный вектор прямой . Перепишем уравнение в виде , откуда видны координаты нормального вектора этой прямой: .

Векторы и перпендикулярны, так как их скалярное произведение равно нулю: . Таким образом, выполняется необходимое и достаточное условие перпендикулярности заданных прямых, то есть, они действительно перпендикулярны.

В частности, если прямую a на плоскости определяет уравнение прямой с угловым коэффициентом вида , а прямую b – вида , то нормальные векторы этих прямых имеют координаты и соответственно, а условие перпендикулярности этих прямых сводится к следующему соотношению между угловыми коэффициентами .

Пример.

Перпендикулярны ли прямые и ?

Решение.

Угловой коэффициент прямой равен , а угловой коэффициент прямой равен . Произведение угловых коэффициентов равно минус единице , следовательно, прямые перпендикулярны.

Ответ:

заданные прямые перпендикулярны.

Можно озвучить еще одно условие перпендикулярности прямых на плоскости.

Теорема.

Для перпендикулярности прямых a и b на плоскости необходимо и достаточно, чтобы направляющий вектор одной прямой и нормальный вектор второй прямой были коллинеарны.

Этим условием, очевидно, удобно пользоваться, когда легко находятся координаты направляющего вектора одной прямой и координаты нормального вектора второй прямой, то есть, когда одна прямая задана каноническим уравнением или параметрическими уравнениями прямой на плоскости, а вторая – или общим уравнением прямой, или уравнением прямой в отрезках, или уравнением прямой с угловым коэффициентом.

Пример.

Являются ли прямые и перпендикулярными?

Решение.

Очевидно, - нормальный вектор прямой , а - направляющий вектор прямой . Векторы и не коллинеарны, так как для них не выполняется условие коллинеарности двух векторов(не существует такого действительного числа t , при котором ). Следовательно, заданные прямые не перпендикулярны.

Ответ:

прямые не перпендикулярны.

21. Расстояние от точки до прямой.

Расстояние от точки до прямой определяется через расстояние от точки до точки. Покажем как это делается.

Пусть на плоскости или в трехмерном пространстве задана прямая a и точка M 1 , не лежащая на прямой a . Проведем через точку M 1 прямую b , перпендикулярную прямой a . Обозначим точку пересечения прямых a и b как H 1 . Отрезок M 1 H 1 называется перпендикуляром , проведенным из точки M 1 к прямой a .

Определение.

Расстоянием от точки M 1 до прямой a называют расстояние между точками M 1 и H 1 .

Однако чаще встречается определение расстояния от точки до прямой, в котором фигурирует длина перпендикуляра.

Определение.

Расстояние от точки до прямой – это длина перпендикуляра, проведенного из данной точки к данной прямой.

Это определение эквивалентно первому определению расстояния от точки до прямой.

Обратите внимание на то, что расстояние от точки до прямой – это наименьшее из расстояний от этой точки до точек заданной прямой. Покажем это.

Возьмем на прямой a точку Q , не совпадающую с точкой M 1 . Отрезок M 1 Q называютнаклонной , проведенной из точки M 1 к прямой a . Нам нужно показать, что перпендикуляр, проведенный из точки M 1 к прямой a , меньше любой наклонной, проведенной из точки M 1 к прямой a . Это действительно так: треугольник M 1 QH 1 прямоугольный с гипотенузой M 1 Q , а длина гипотенузы всегда больше длины любого из катетов, следовательно, .

22. Плоскость в пространстве R3. Уравнение плоскости.

Плоскость в декартовой прямоугольной системе координат может быть задана уравнением, которое называется общим уравнением плоскости.

Определение. Вектор перпендикулярен плоскости и называется ее нормальным вектором.

Если в прямоугольной системе координат известны координаты трех точек , не лежащих на одной прямой, то уравнение плоскости записывается в виде: .

Вычислив данный определитель, получим общее уравнение плоскости.

Пример. Написать уравнение плоскости, проходящей через точки .

Решение:

Уравнение плоскости: .

23. Исследование общего уравнения плоскости.

О п р е д е л е н и е 2. Всякий вектор, перпендикулярный плоскости, называется нормальным вектором этой плоскости.

Если известна фиксированная точка M 0 (x 0 , y 0 , z 0), лежащая в данной плоскости, и вектор , перпендикулярный данной плоскости, то уравнение плоскости, проходящей через точкуM 0 (x 0 , y 0 , z 0), перпендикулярно вектору , имеет вид

A (x-x 0)+ B (y-y 0) + C (z-z 0)= 0. (3.22)

Покажем, что уравнение (3.22) является общим уравнением плоскости (3.21). Для этого раскроем скобки и соберем в скобки свободный член:

.Ax + By+ Cz + (-Ax 0 - By -Cz 0)= 0

ОбозначивD = -Ax 0 - By -Cz 0 , получим уравнение Ax + By + Cz + D = 0.

Задача 1. Составить уравнение плоскости, проходящей через точку А, перпендикулярно вектору , если A (4, -3, 1), B (1, 2, 3).

Решение. Найдем нормальный вектор плоскости :

Для нахождения уравнения плоскости используем уравнение (3.22):

Ответ: -3x + 5y + 2z + 25 = 0.

Задача 2. Составить уравнение плоскости, проходящей через точку M 0 (-1, 2, -1), перпендикулярно оси OZ .

Решение. В качестве нормального вектора искомой плоскости можно взять любой вектор, лежащий на оси OZ, например, , тогда уравнение плоскости

Ответ: z + 1 = 0.

24. Расстояние от точки до плоскости.

Расстояние от точки до плоскости определяется через расстояние от точки до точки, одна из которых заданная точка, а другая – проекция заданной точки на заданную плоскость.

Пусть в трехмерном пространстве задана точка М 1 и плоскость . Проведем через точку М 1 прямую a , перпендикулярную к плоскости . Обозначим точку пересечения прямой a и плоскости как H 1 . Отрезок M 1 H 1 называют перпендикуляром , опущенным из точки М 1 на плоскость , а точку H 1 основанием перпендикуляра .

Определение.

– это расстояние от данной точки до основания перпендикуляра, проведенного из заданной точки к заданной плоскости.

Чаще встречается определение расстояние от точки до плоскости в следующем виде.

Определение.

Расстояние от точки до плоскости – это длина перпендикуляра, опущенного из заданной точки к заданной плоскости.

Следует отметить, что расстояние от точки М 1 до плоскости , определенное таким образом, является наименьшим из расстояний от заданной точки М 1 до любой точки плоскости . Действительно, пусть точка H 2 лежит в плоскости и отлична от точки H 1 . Очевидно, треугольник М 2 H 1 H 2 является прямоугольным, в нем М 1 H 1 – катет, а M 1 H 2 – гипотенуза, следовательно, . Кстати, отрезок M 1 H 2 называется наклонной , проведенной из точки М 1 к плоскости . Итак, перпендикуляр, опущенный из заданной точки на заданную плоскость, всегда меньше наклонной, проведенной из этой же точки к заданной плоскости.

Если прямая проходит через две заданные точки , то ее уравнение записывают в виде: .

Определение. Вектор называется направляющим вектором прямой, если он параллелен или принадлежит ей.

Пример. Написать уравнение прямой, проходящей через две заданные точки .

Решение: Используем общую формулу прямой, проходящей через две заданные точки: - каноническое уравнение прямой, проходящей через точки и . Вектор - направляющий вектор прямой.

26. Взаимное расположение прямых в пространстве R3.

Перейдем к вариантам взаимного расположения двух прямых в пространстве.

Во-первых, две прямые могут совпадать, то есть, иметь бесконечно много общих точек (по крайней мере две общие точки).

Во-вторых, две прямые в пространстве могут пересекаться, то есть, иметь одну общую точку. В этом случае эти две прямые лежат в некоторой плоскости трехмерного пространства. Если две прямые в пространстве пересекаются, то мы приходим к понятию угла между пересекающимися прямыми.

В-третьих, две прямые в пространстве могут быть параллельными. В этом случае они лежат в одной плоскости и не имеют общих точек. Рекомендуем к изучению статью параллельные прямые, параллельность прямых.

После того как мы дали определение параллельных прямых в пространстве, следует сказать онаправляющих векторах прямой линии в силу их важности. Любой ненулевой вектор, лежащий на этой прямой или на прямой, которая параллельна данной, будем называть направляющим вектором прямой. Направляющий вектор прямой очень часто используется при решении задач, связанных с прямой линией в пространстве.

Наконец, две прямые в трехмерном пространстве могут быть скрещивающимися. Две прямые в пространстве называются скрещивающимися, если они не лежат в одной плоскости. Такое взаимное расположение двух прямых в пространстве приводит нас к понятию угла между скрещивающимися прямыми.

Особое практическое значение имеет случай, когда угол между пересекающимися или скрещивающимися прямыми в трехмерном пространстве равен девяноста градусам. Такие прямые называют перпендикулярными (смотрите статью перпендикулярные прямые, перпендикулярность прямых).

27. Взаимное расположение прямой и плоскости в пространстве R3.

Прямая может лежать на данной плоскости, быть параллельна данной плоскости или пересекать ее в одной точке, см. следующие рисунки.

Если , то это означает, что . А такое возможно лишь тогда, когда прямая лежит на плоскости или параллельна ей. Если прямая лежит на плоскости, то любая точка прямой является точкой плоскости икоординаты любой точки прямой удовлетворяют уравнению плоскости. Поэтому достаточно проверить, лежит ли на плоскости точка . Если , то точка – лежит на плоскости, а это означает, что и сама прямая лежит на плоскости.

Если , а , то точка на прямой не лежит на плоскости, а это означает, что прямая параллельна плоскости.

Теорема доказана.























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель : знать, понимать и уметь применять признак перпендикулярности прямой и плоскости.

Задачи :

  • повторить определения перпендикулярности прямых, прямой и плоскости.
  • повторить утверждения о перпендикулярности параллельных прямых.
  • ознакомить с признаком перпендикулярности прямой и плоскости.
  • понимать необходимость применения признака перпендикулярности прямой и плоскости.
  • уметь находить данные позволяющие применять признак перпендикулярности прямой и плоскости.
  • тренировать внимательность, аккуратность, логическое мышление, пространственное воображение.
  • воспитывать чувство ответственности.

Оборудование: компьютер, проектор, экран.

План урока

1. Организационный момент. (сообщить тему, мотивация, сформулировать цель урока)

2. Повторение ранее изученного материала и теорем (актуализация прежних знаний учащихся: формулировки определений и теорем с последующим пояснением или применением на готовом чертеже).

3. Изучение нового материала как усвоение нового знания (формулировка, доказательство).

4. Первичное закрепление (фронтальная работа, самоконтроль).

5. Повторный контроль (работа с последующей взаимопроверкой).

6. Рефлексия.

7. Домашнее задание.

8. Подведение итогов.

Ход урока

1. Организационный момент

Cообщить тему урока (слайд 1): Признак перпендикулярности прямой и плоскости

Мотивация: на прошлом уроке мы дали определение прямой, перпендикулярной плоскости, но применять его не всегда удобно (слайд 2).

Формулирование цели: знать, понимать и уметь применять признак перпендикулярности прямой и плоскости (слайд 3)

2. Повторение раннее изученного материала

Учитель: Давайте вспомним, что мы уже знаем о перпендикулярности в пространстве.

Математический диктант с пошаговой самопроверкой.

Начертите в тетради куб ABCDA’B’C’D’.

Каждое задание предполагает устную формулировку и запись Вашего примера в тетради.

1. Сформулируйте определение перпендикулярных прямых.

Приведите пример на чертеже куба (слайд 4).

2. Сформулируйте лемму о перпендикулярности двух параллельных прямых к третьей.

Докажите, что АА’ перпендикулярна DС (слайд 5).

3. Cформулируйте определение прямой, перпендикулярной плоскости.

Назовите прямую, перпендикулярную плоскости основания куба. (слайд 6)

4. Сформулируйте теоремы устанавливающие связь между параллельностью прямых и их перпендикулярности к плоскости. (слайд 7)

5. Решите задачу №1. (слайд 8)

Найдите угол между прямыми FO и АВ, если ABCDA’B’C’D’ - куб, точка О - точка пересечения диагоналей основания, F - середина А’С.

6. Рассмотрение домашней задачи №119(слайд 9) (устно)

Рассмотреть разные варианты решения: через доказательство равенства прямоугольных треугольников и свойство равнобедренного треугольника.

Постановка проблемы

Рассмотреть истинность утверждения:

  • Прямая перпендикулярна плоскости, если она перпендикулярна какой-нибудь прямой, лежащей в этой плоскости.
  • Прямая перпендикулярна плоскости, если она перпендикулярна каким-нибудь параллельным прямым, лежащим в этой плоскости. (слайд 10-11)

3. Изучение нового материала

Ученики предлагают варианты признака.

Формулируется признак перпендикулярности прямой и плоскости (слайд 12).

Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна этой плоскости.

Доказательство.

1 этап (слайд 13).

Пусть прямая а пересекает плоскость в точке пересечения прямых p и q. Проведем через точку О прямую, параллельную m и произвольную прямую, так чтобы она пересекала все три прямые в точках P, Q, L.

APQ = BPQ (слайд 14)

APL= BPL (слайд 15)

Медиана LO является высотой (слайд 16)

В силу произвольности выбора прямой m доказано, что прямая а перпендикулярна плоскости

2 этап (слайд 17)

Прямая а пересекает плоскости в точке отличной от точки О.

Проведем прямую a’, такую что a || a’, и проходящую через точку О,

а так как a’ a по ранее доказанному,

то и a a

Теорема доказана

4. Первичное закрепление.

Итак, для того, чтобы утверждать, что прямая перпендикулярна плоскости, достаточно какого условия?

Очевидно, что столб перпендикулярен и шпалам и рельсам. (слайд 18)

Решим задачу №128. (слайд 19) (работа по группам, если справляются сами, то доказательство проговаривается устно, для слабых учеников используется подсказка на экране)

5. Повторный контроль.

Установите истинность утверждений (ответ И (истина), Л (ложь).) (слайд 20)

Прямая а проходит через центр круга.

Можно ли утверждать, что прямая а перпендикулярна кругу, если

  • она перпендикулярна диаметру
  • двум радиусам
  • двум диаметрам

6. Рефлексия

Ученики рассказывают основные этапы урока: какая проблема возникла, какое решение (признак) был предложен.

Учитель делает замечание о проверке вертикальности при строительстве (слайд 21).

7. Домашнее задание

П.15-17 №124, 126 (слайд 23)

8. Подведение итогов

  • Какова тема нашего урока?
  • Какова была цель?
  • Цель достигнута?

Приложение

В презентации использованы чертежи, сделанные с помощью программы “Живая математика” представленные в приложении 1 .

Литература

  1. Геометрия. 10-11 классы: учеб. для общеобразоват. учреждений: базовый и профил. уровни/Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.
  2. С.М. Саакян В.Ф. Бутузов Изучение геометрии в 10-11 классах: методические рекомендации к учеб.: кн. для учителя.
  3. Т.В. Валаханович, В.В. Шлыков Дидактические материалы по геометрии: 11 класс: пособие для учителей общеобразоват. учреждений с рус. яз. обучения с 12 летним сроком обучения (базовый и повышенный уровни) Мн.
  4. Поурочные разработки по геометрии: 10 класс/ Сост. В.А. Яровенко.

На этом уроке мы рассмотрим перпендикулярность прямых в пространстве, перпендикулярность прямой и плоскости и параллельные прямые, которые перпендикулярны к плоскости.
Вначале дадим определение двух перпендикулярных прямых в пространстве и их обозначение. Рассмотрим и докажем лемму о параллельных прямых, перпендикулярных третьей прямой. Далее дадим определение прямой, перпендикулярной к плоскости, и рассмотрим свойство такой прямой, при этом вспомнив взаимное расположение прямой и плоскости. Далее докажем прямую и обратную теорему о двух параллельных прямых, перпендикулярных к плоскости.
В конце урока решим две задачи на перпендикулярность прямых в параллелепипеде и тетраэдре.

Тема: Перпендикулярность прямой и плоскости

Урок: Перпендикулярные прямые в пространстве. Параллельные прямые, перпендикулярные к плоскости

На этом уроке мы рассмотрим перпендикулярность прямых в пространстве, перпендикулярность прямой и плоскости и параллельные прямые, которые перпендикулярны к плоскости .

Определение . Две прямые называются перпендикулярными, если угол между ними равен 90°.

Обозначение . .

Рассмотрим прямые а и b . Прямые могут пересекаться, скрещиваться, быть параллельными. Для того, чтобы построить угол между ними нужно выбрать точку и через нее провест а, и прямую , параллельную прямойb . Прямые и пересекаются. Угол между ними и есть угол между прямыми а и b. Если угол равен 90°, то прямые а и b перпендикулярны.

Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.

Доказательство :

Пусть даны две параллельные прямые а и b, и прямая с ,причем . Нужно доказать, что .

Возьмем произвольную точку М . Через точку М проведем прямую , параллельную прямой а и прямую , параллельную прямой c (рис. 2). Тогда угол АМС равен 90°.

Прямая b параллельна прямой а по условию, прямая параллельна прямой а по построению. Значит, прямые и b параллельны.

Имеем, прямые и b параллельны, прямые с и параллельны по построению. Значит, угол между прямыми b и с - это угол между прямыми и, то есть угол АМС , равный 90°. Значит, прямые b и с перпендикулярны, что и требовалось доказать.

Определение . Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости.

Обозначение. .

1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил.

Задания 5, 6, 7 стр. 54

2. Дайте определение перпендикулярности прямых в пространстве.

3. Равные стороны АВ и CD четырехугольника ABCD перпендикулярны некоторой плоскости. Определите вид четырехугольника.

4. Сторона треугольника перпендикулярна некоторой прямой а. Докажите, что одна из средних линий треугольника перпендикулярна прямой а .

Перпендикулярность в пространстве могут иметь:

1. Две прямые

3. Две плоскости

Давай по очереди рассмотрим эти три случая: все относящиеся к ним определения и формулировки теорем. А потом обсудим очень важную теорему о трёх перпендикулярах.

Перпендикулярность двух прямых.

Определение:

Ты можешь сказать: тоже мне, открыли Америку! Но вспомни, что в пространстве всё не совсем так, как на плоскости.

На плоскости перпендикулярными могут оказаться только такие прямые (пересекающиеся):

А вот перпендикулярность в пространстве двух прямых может быть даже в случае если они не пересекаются. Смотри:

прямая перпендикулярна прямой, хотя и не пересекается с нею. Как так? Вспоминаем определение угла между прямыми: чтобы найти угол между скрещивающимися прямыми и, нужно через произвольную точку на прямой a провести прямую. И тогда угол между и (по определению!) будет равен углу между и.

Вспомнили? Ну вот, а в нашем случае - если окажутся перпендикулярны прямые и, то нужно считать перпендикулярными прямые и.

Для полной ясности давай рассмотрим пример. Пусть есть куб. И тебя просят найти угол между прямыми и. Эти прямые не пересекаются - они скрещиваются. Чтобы найти угол между и, проведём.

Из-за того, что - параллелограмм (и даже прямоугольник!), получается, что. А из-за того, что - квадрат, выходит, что. Ну, и значит.

Перпендикулярность прямой и плоскости.

Определение:

Вот картинка:

прямая перпендикулярна плоскости, если она перпендикулярна всем-всем прямым в этой плоскости: и, и, и, и даже! И ещё миллиарду других прямых!

Да, но как же тогда вообще можно проверить перпендикулярность в прямой и плоскости? Так и жизни не хватит! Но на наше счастье математики избавили нас от кошмара бесконечности, придумав признак перпендикулярности прямой и плоскости .

Формулируем:

Оцени, как здорово:

если найдутся всего лишь две прямые (и) в плоскости, которым перпендикулярна прямая, то эта прямая сразу окажется перпендикулярна плоскости, то есть всем прямым в этой плоскости (в том числе и какой-то стоящей сбоку прямой). Это очень важная теорема, поэтому нарисуем её смысл ещё и в виде схемы.

И опять рассмотрим пример .

Пусть нам дан правильный тетраэдр.

Задача: доказать, что. Ты скажешь: это же две прямые! При чём же здесь перпендикулярность прямой и плоскости?!

А вот смотри:

давай отметим середину ребра и проведём и. Это медианы в и. Треугольники - правильные и.

Вот оно, чудо: получается, что, так как и. И далее, всем прямым в плоскости, а значит, и. Доказали. И самым главным моментом оказалось именно применение признака перпендикулярности прямой и плоскости.

Когда плоскости перпендикулярны

Определение:

То есть (подробнее смотри в теме «двугранный угол») две плоскости (и) перпендикулярны, если окажется, что угол между двумя перпендикулярами (и) к линии пересечения этих плоскостей равен. И есть теорема, которая связывает понятие перпендикулярных плоскостей с понятием перпендикулярность в пространстве прямой и плоскости.

Теорема эта называется

Критерий перпендикулярности плоскостей.

Давай сформулируем:

Как всегда, расшифровка слов «тогда и только тогда» выглядит так:

  • Если, то проходит через перпендикуляр к.
  • Если проходит через перпендикуляр к, то.

(естественно, здесь и - плоскости).

Эта теорема - одна из самых важных в стереометрии, но, к сожалению, и одна из самых непростых в применении.

Так что нужно быть очень внимательным!

Итак, формулировка:

И снова расшифровка слов «тогда и только тогда». Теорема утверждает сразу две вещи (смотри на картинку):

давай попробуем применить эту теорему для решения задачи.

Задача : дана правильная шестиугольная пирамида. Найти угол между прямыми и.

Решение:

Из-за того, что в правильной пирамиде вершина при проекции попадает в центр основания, оказывается, что прямая - проекция прямой.

Но мы знаем, что в правильном шестиугольнике. Применяем теорему о трёх перпендикулярах:

И пишем ответ: .

ПЕРПЕНДИКУЛЯРНОСТЬ ПРЯМЫХ В ПРОСТРАНСТВЕ. КОРОТКО О ГЛАВНОМ

Перпендикулярность двух прямых.

Две прямые в пространстве перпендикулярны, если угол между ними.

Перпендикулярность прямой и плоскости.

Прямая перпендикулярна плоскости, если она перпендикулярна всем прямым в этой плоскости.

Перпендикулярность плоскостей.

Плоскости перпендикулярны, если двугранный угол между ними равен.

Критерий перпендикулярности плоскостей.

Две плоскости перпендикулярны тогда и только тогда, когда одна из них проходит через перпендикуляр к другой плоскости.

Теорема о трех перпендикулярах:

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 899 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!


В этой статье мы поговорим о перпендикулярности прямой и плоскости. Сначала дано определение прямой, перпендикулярной к плоскости, приведена графическая иллюстрация и пример, показано обозначение перпендикулярных прямой и плоскости. После этого сформулирован признак перпендикулярности прямой и плоскости. Далее получены условия, позволяющие доказывать перпендикулярность прямой и плоскости, когда прямая и плоскость заданы некоторыми уравнениями в прямоугольной системе координат в трехмерном пространстве. В заключении показаны подробные решения характерных примеров и задач.

Навигация по странице.

Перпендикулярные прямая и плоскость – основные сведения.

Рекомендуем для начала повторить определение перпендикулярных прямых , так как определение прямой, перпендикулярной к плоскости, дается через перпендикулярность прямых.

Определение.

Говорят, что прямая перпендикулярна к плоскости , если она перпендикулярна любой прямой, лежащей в этой плоскости.

Также можно сказать, что плоскость перпендикулярна к прямой, или прямая и плоскость перпендикулярны.

Для обозначения перпендикулярности используют значок вида «». То есть, если прямая c перпендикулярна к плоскости , то можно кратко записать .

В качестве примера прямой, перпендикулярной к плоскости, можно привести прямую, по которой пересекаются две смежных стены комнаты. Эта прямая перпендикулярна к плоскости и к плоскости потолка. Канат в спортивном зале можно также рассматривать как отрезок прямой, перпендикулярной к плоскости пола.

В заключении этого пункта статьи отметим, что если прямая перпендикулярна к плоскости, то угол между прямой и плоскостью считается равным девяноста градусам.

Перпендикулярность прямой и плоскости - признак и условия перпендикулярности.

На практике часто возникает вопрос: «Перпендикулярны ли заданные прямая и плоскость»? Для ответа на него существует достаточное условие перпендикулярности прямой и плоскости , то есть, такое условие, выполнение которого гарантирует перпендикулярность прямой и плоскости. Это достаточное условие называют признаком перпендикулярности прямой и плоскости. Сформулируем его в виде теоремы.

Теорема.

Для перпендикулярности заданных прямой и плоскости достаточно, чтобы прямая была перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости.

Доказательство признака перпендикулярности прямой и плоскости Вы можете посмотреть в учебнике геометрии за 10 -11 классы.

При решении задач на установление перпендикулярности прямой и плоскости также часто применяется следующая теорема.

Теорема.

Если одна из двух параллельных прямых перпендикулярна к плоскости, то и вторая прямая перпендикулярна к плоскости.

В школе рассматривается много задач, для решения которых применяется признак перпендикулярности прямой и плоскости, а также последняя теорема. Здесь мы не будем на них останавливаться. В этом пункте статьи основное внимание сосредоточим на применении следующего необходимого и достаточного условия перпендикулярности прямой и плоскости.

Это условие можно переписать в следующем виде.

Пусть - направляющий вектор прямой a , а - нормальный вектор плоскости . Для перпендикулярности прямой a и плоскости необходимо и достаточно, чтобы выполнялось и : , где t – некоторое действительное число.

Доказательство этого необходимого и достаточного условия перпендикулярности прямой и плоскости основано на определениях направляющего вектора прямой и нормального вектора плоскости.

Очевидно, это условие удобно использовать для доказательства перпендикулярности прямой и плоскости, когда легко находятся координаты направляющего вектора прямой и координаты нормального вектора плоскости в зафиксированной в трехмерном пространстве. Это справедливо для случаев, когда заданы координаты точек, через которые проходят плоскость и прямая, а также для случаев, когда прямую определяют некоторые уравнения прямой в пространстве , а плоскость задана уравнением плоскости некоторого вида.

Рассмотрим решения нескольких примеров.

Пример.

Докажите перпендикулярность прямой и плоскости .

Решение.

Нам известно, что числа, стоящие в знаменателях канонических уравнений прямой в пространстве , являются соответствующими координатами направляющего вектора этой прямой. Таким образом, - направляющий вектор прямой .

Коэффициенты при переменных x , y и z в общем уравнении плоскости являются координатами нормального вектора этой плоскости, то есть, - нормальный вектор плоскости .

Проверим выполнение необходимого и достаточного условия перпендикулярности прямой и плоскости.

Так как , то векторы и связаны соотношением , то есть, они коллинеарны. Следовательно, прямая перпендикулярна плоскости .

Пример.

Перпендикулярны ли прямая и плоскость .

Решение.

Найдем направляющий вектор заданной прямой и нормальный вектор плоскости, чтобы проверить выполнений необходимого и достаточного условия перпендикулярности прямой и плоскости.

Направляющим вектором прямой является



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!