Про ванную комнату - Потолок. Ванные. Кафель. Оборудование. Ремонт. Сантехника

Исследовательская работа по годичным кольцам. Изучение динамики роста дерева по годичным кольцам Исследование работа годичные кольца деревьев

МУНИЦИПАЛЬНОЕ КАЗЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ЗЮЗИНСКОЙ СРЕДНЕЙ

ОБЩЕОБРАЗОВАТЕЛЬНОЙ ШКОЛЫ

Исследовательская работа

«ОПРЕДЕЛЕНИЕ ВОЗРАСТА ДЕРЕВА

ПО ЕГО ГОДИЧНЫМ КОЛЬЦАМ»

Выполнила: ученик 4 класса

Снегирёв Дмитрий

Руководитель:

учитель начальных классов

Снегирёва Наталья Владимировна

Зюзя 2015г.

СОДЕРЖАНИЕ

    Введение……………………………………………………………2 стр.

    Теоретическая часть……………………………………………….4 стр.

    Практическая часть исследования. ………………………………5 стр.

    Заключение…………………………………………………….…...7 стр.

    Список литературы………………………..……………………….8 стр.

    Приложение.

Введение

Я хочу начать свою исследовательскую работу с того, что в 1969 году была построено новое здание Зюзинской средней школы. Затем учащиеся 1-10 классов во время школьных субботников вместе с учителями посадили саженцы деревьев вокруг школы. Саженцы росли, зеленели и благодаря уходу превратились в огромные деревья. Особенно стройным и могучим был тополь росший у входа в школу. Но 2011 году это дерево вынуждены были спилить, т.к. оно стало угрожать безопасности школы. Спил этого дерева мы решили исследовать. Я попыталась самостоятельно определить возраст дерева, и уточнить, в каком году оно было посажено.

Поэтому я выбрал тему: «Определение возраста тополя по его годичным кольцам».

Цель работы:

Определить возраст тополя и установить связь между возрастом и условиями его произрастания.

Задачи :

1. Изучить литературу по теме;

2. Определить возраст дерева по конкретно выбранному спилу дерева;

3. Проанализировать годовые кольца.

4 . Сформулировать выводы, позволяющие подтвердить высказанную гипотезу.

Гипотеза исследования:

1.По количеству годовых колец можно определить возраст дерева.

2. Ширина между годичным кольцам зависит не только от возраста дерева, но и от условий жизни дерева в разные годы.

Предметом исследования является спил тополя, росшего возле школы.

Объект исследования факторы, влияющие на ширину годичных колец.

Основные методы работы:

    исследовательский;

    метод анализа и обобщения.

    описательный;

Теоретическая часть

Деревья, произрастающие в климатических зонах с сезонным климатом, летом и зимой растут неодинаково: основной рост происходит летом, зимой же рост сильно замедлен. Различие условий приводит к тому, что древесина, нарастающая зимой и летом, отличается своими характеристиками, в том числе плотностью и цветом. Визуально это проявляется в том, что древесный ствол на поперечном распиле имеет чётко видимую структуру в виде набора концентрических колец. Каждое кольцо соответствует одному году жизни дерева («зимний» слой тоньше и визуально просто отделяет одно «летнее» кольцо от другого). Общеизвестным является способ определения возраста спиленного дерева путём подсчёта числа годичных колец на распиле. В зависимости от множества факторов, действовавших в летний период (продолжительность сезона, температурный режим, количество осадков и прочее) толщина годичных колец в разные годы жизни дерева различна. Различия в толщине колец в разные годы достаточно значительны. При учёте ширины каждого кольца и применении методов математической статистики вероятность ошибки значительно снижается.

Практическая часть

Моя работа заключается в исследовании спила. В основе исследования спила тополя лежит метод кольцевого анализа, который основывается на свойстве дерева прирастать ежегодно на одно годичное кольцо.

По годовым кольцам я попытаюсь определить возраст дерева и условия произрастания.

Описание исследуемого материал.

Для исследования использовалось дерево с вырубки, взят поперечный спил тополя. (Приложение №1)

При внимательном рассмотрении поверхности спила невооруженным глазом и на ощупь можно убедиться, что древесный срез разный по структуре.

(Приложение №2)

Подсчет ширины колец.

Самая ответственная процедура при выполнении данного задания – подсчет ширины годичных колец.

Вначале тонким карандашом намечаю линию, по которой буду проводиться измерения. Линия должна проходить точно от центра спила до его внешнего края (по радиусу). Для измерения следует выбрать сектор ствола с наименьшим количеством аномалий – трещин, неконцентрических уплотнений, остатков сучков, старых затекших ран и т.п. Линия подсчетов должна проходить по максимально «среднему» сектору древесины.

(Приложение №3)

Затем к внешнему краю последнего (наружного) кольца прикладываем линейку с хорошо различимыми миллиметровыми делениями. Ноль линейки должен совпадать с внешним краем последнего кольца.

(Приложение №4)

Исследование проводится с помощью линейки (линейку берём 30 см) и лупы

Диаметр ствола D – 66 см

R 1 = 1 см R 2 = 1см R 3 = 0,9см R 4 = 1,2см R 5 = 1,3см R 6 = 0,8см

R 7 = 0,5 см R 8 = 0,5 см R 9 =0,9 см R 10 = 1см R 11 =0,9см R 12 =1см R 13 =1см R 14 =0,9см R 15 =0,5см R 16 = 0,6см R 17 = 0,5см R 18 = 0,7см R 19 =0,8см R 20 = 1см R 21 =1,5см R 22 =0,4см R 23 =1см R 24 = 1,5см

R 25 = 1,8см R 26 = 2см R 27 = 1,5см R 28 = 1см R 29 = 1,4см R 30 =1,5см R 31 =1,4см R 32 =1см R 33 =0,8см

R 34 = 2см R 35 = 2см R 36 = 2см R 37 = 2,3см R 38 = 2,5см R 39 =0,6см

R 40 = 0,5см

Исследование с помощью лупы показал, что примерный радиус ширины между годичными кольцами составляет R 1 = 1.5 см (см. приложение 5)

Образец имеет сорок годовых колец. В центре находится более рыхлая сердцевина, хорошо заметная. Годичные кольца широкие, темные и светлые едва различимые не одинаковые по ширине на разных сторонах дерева, древесина прочная.

В ходе исследования измерения подсчетов годичности колец я выяснила, что дереву 40 лет, его посадили примерно в 1971 году. 2011(год, когда дерево спилено)- 40(количество годовых колец)= 1971год. Это подтверждается воспоминаниями очевидцев. Школу открыли в 1970 году, деревья садили на следующий год весной.

По ширине расстояния между годичными кольцами от 0,5 до 2,5 мм.

Также я определила благоприятные и неблагоприятные годы для роста дерева, это показано в таблице. (Приложение 6)

Также, исходя из расстояния между годичными кольцами, я выяснила, где у дерева была южная и северная стороны. Это видно по годичным кольцам. Там, где узкие кольца и ширина между кольцами от 0,2 мм до 1 см - это север, а где широкие кольца и ширина между кольцами от 1см до 2,5 см - это юг. (Приложение 7)

Вывод: возраст дерева примерно сорок лет. Росло оно на влажных землях, хорошо питалось, об этом свидетельствуют широкие, светло-желтые кольца и состояние древесины. Дерево росло в хорошо освещённом месте, именно поэтому ширина годовых колец на разных сторонах дерева примерно одинакова.

Сказать можно точно, что такое растение могло стать долгожителем, если бы его не спилили.

Заключение

Проанализировав полученный материал, я пришла к выводу, что, подсчитав с помощью линейки число годичных колец, можно определить приблизительный возраст спиленного дерева.

По толщине годичных колец можно узнать, в каких условиях росло дерево в разные годы жизни. Узкие годичные кольца свидетельствуют о недостатке влаги, о затенении дерева и о его плохом питании. По годичным кольцам можно определить и стороны света. Годичные кольца обычно шире с той стороны дерева, которая обращена к югу, и уже с той, которая обращена к северу.

Поскольку каждый год толщина ствола увеличивается, то, казалось бы, долгожителей нужно искать среди толстых деревьев, но не тут то - было, рост дерева в толщину в основном зависит не от возраста растения, а от условий его произрастания.

Можно спросить: «Для чего знать возраст дерева?»

Ответ, на мой взгляд, прост. Дерево своеобразный источник информации, по которому человек может узнать, о погодных условиях, о качестве почвы, экологическом состояние местности в разные периоды времени. Дерево «можно прочесть как книгу». Приглядись внимательно и ты проникнешь в тайны прошлого и настоящего!

Список литературы

1. Б.Н.Головкин, М.Т.Мазуренко. Энциклопедическое издание

«Я познаю мир» -М.: ООО « Издательство Астрель» 2002.

2. В.А.Корчагина. Биология: Растения, бактерии, грибы, лишайники: Учеб. для 6-7 кл.-М.: Просвещение, 1990 г.

Приложение №6

Анализ условий рост дерева

Благоприятные годы

Неблагоприятные годы

1-5 (1971-1975г)

6-8 (1976-1978г)

9-14 (1979-1984)

15-19 (1985-1989)

20,21 (1990-1991)

23-26 (1993-1996)

27-29 (1997-1999)

30-32 (2000-2002)

34-37 (2004-2008)

Дендроклиматологические исследования в окрестностях села Горелец

Статья является итогом трехлетней работы московских школьников на летней естественно-научной школе, проходящей ежегодно в с. Горелец Костромской обл., и обработки данных в Москве. В 2002 г. за первый этап работы авторы получили 4-е место на конкурсе научных работ школьников «Юниор – 2002». В работе по сбору и обработке данных принимали также участие московские школьники Ольга Рудик, Александр Черепанов, Елизавета Маньковская, Надежда Адина и школьница из Костромской области Любовь Батманова.

При подготовке очередной летней школы мы заглянули в энциклопедию «География» (издательство «Аванта+») и прочли про восстановление параметров климата прошлых лет по древесным кольцам. Там все было просто и красиво, и мы решили это проверить (за год до этого мы уже проверяли тезис о том, что можно ориентироваться в лесу без компаса по тому, как растет мох, – оказалось, нельзя.) Где-то «выкопали» методики, как обрабатывать результаты – придумали сами. Потом выяснилось, что в Шеффилдском университете, одном из основных центров, занимающихся дендроклиматологией, делают все так же.

Все оказалось очень сложно, непонятно и интересно – и совсем не так, как в энциклопедии. Часть результатов нашей работы представлены в этой статье.

Согласно литературным данным, деревья являются естественным архивом климатических изменений. Показано, что существует корреляция между рядами толщин годичных колец и временными рядами климатических данных и солнечной активности. Это дает возможность получать сведения об истории климата для тех периодов времени, когда не велось инструментальных наблюдений. Исследование годичных колец используется также для определения возраста деревьев в старых постройках.

Дендроклиматологический метод основан на зависимости интенсивности фотосинтеза, идущего в листьях деревьев, а следовательно, и количества образованной за год древесины, от климатических параметров. Для северных районов основным фактором, влияющим на этот процесс (ограничивающим фактором), является температура, для южных – влажность, количество осадков. Ситуация для умеренного климата более сложная.

Для того, чтобы получить сведения о климатических параметрах, надо иметь надежную базу данных по толщинам колец деревьев для данной местности (для некоторых районов базы данных существуют), поэтому одной из наших задач было составление такой базы для исследуемого района – севера Костромской области. Кроме того, ставились следующие задачи:

– выявить факторы, влияющие на толщину годичных колец;
– построить усредненную кривую толщин годичных колец для данной местности;
– проанализировать корреляцию этой кривой с графиками климатических параметров.

Предметом нашего исследования были спилы и керны ели и сосны. (Керн – это образец древесины, высверленный из дерева с помощью специального инструмента – бура.) Они были получены с упавших и живых деревьев в лесу, на вырубке, около жилых построек и из бревен старых деревянных домов. Старались брать образцы с комля, чтобы увидеть больше колец и следовательно получить максимальную информацию о каждом дереве.

Было исследовано 50 образцов деревьев разного возраста, полученных на нескольких площадках с различными локальными условиями. Спилы шлифовали, сканировали и заносили в компьютер.

Нами была разработана полуавтоматическая система измерения толщины колец и обработке данных с помощью программ Photoshop и Excel.

Обработка данных производилась следующим образом. Ряды толщин колец деревьев сглаживались по 3 или по 9 точкам (формула T 2 =(T 1 +T 2 +T 3)/3). Далее сглаженные кривые нормировали, т.е. делили каждую толщину на максимальное значение толщины годичных слоев (формула T 1 =T 1 /T max). Это делалось для того, чтобы графики зависимости толщины кольца от его номера для всех деревьев имели близкие масштабы (пункт толщины кольца не больше единицы). После этого мы привязывали графики спилов друг к другу по времени, определяя, при каком сдвиге графиков друг относительно друга корреляция будет наибольшая. Кривые спилов привязывали к такому графику, у которого точно известен год последнего годичного кольца.

В результате исследований мы получили следующие результаты.

1. Характер зависимости толщины колец от возраста дерева не зависит от высоты, на которой был сделан спил.

2. Толщина каждого кольца зависит от биологического возраста дерева к моменту формирования данного кольца.

Графики зависимости толщины кольца от его номера можно разделить на два типа. Для одиноко растущих деревьев они имеют следующую форму: сначала наблюдается увеличение толщины в интервале 10–20 лет, затем – постепенное, напоминающее экспоненциальное, уменьшение, что связано с физиологией роста дерева. Для деревьев, растущих в лесу, толщина колец возрастает в течение первых 40 лет, затем наблюдается постепенное понижение (рис. 1 и 2). Чтобы исключить влияние данного фактора в последующем рассмотрении, для данной местности были построены кривые роста ели и сосны отдельно для деревьев, растущих в лесу и одиноко стоящих.

Рис. 1. Ростовая кривая одиноко растущей ели
Рис. 2. Ростовая кривая ели, растущей в лесу

Существуют также аномальные деревья, которые сначала росли в густом лесу и были забиты остальными деревьями, а потом пробились к свету и стали интенсивно расти.

3. На толщину годичных колец влияют локальные условия роста дерева.

Мы выявили различия между графиками толщин годичных колец деревьев, росших в густом лесу и одиноко стоящих. Влияние вырубок окружающих деревьев на характер графиков толщин, также велико.

Эта зависимость обусловлена следующим: у деревьев, растущих в густом лесу, большая конкуренция с другими деревьями и прочими растениями за свет, пространство, влагу, органические вещества. Поэтому они растут ввысь, к свету, и толщина колец у таких деревьев в начале жизни невелика, но потом может резко увеличиться, если они пробьются выше других деревьев.

У одиноко стоящих деревьев ситуация иная. Конкуренции никакой нет, поэтому света и органических веществ они получают достаточно, дерево вырастает красивым, здоровым, а в толщине колец нет резких скачков. Спилы таких деревьев особенно ценны при изучении влияния климатических условий.

Влияние вырубок на характер толщин годичных слоев выражается в том, что деревья до вырубки росли в густом лесу и были забиты другими деревьями, после вырубки деревья получают больше свободы для роста, потому что исчезает конкуренция за ресурсы. Как правило, это очень хорошо видно: на графиках толщин годичных колец таких деревьев, наблюдается резкий скачок вверх. Такие скачки очень затрудняют исследование влияния климатических условий на это дерево.

Влияние местных условий по-разному отражается на росте ели и сосны из-за различия их экологических ниш: ель теневынослива, но требовательна к почве, боится перепадов температур, сильных ветров, сосна светолюбива и устойчива к температурным перепадам. Это проявляется на графиках толщин годичных слоев для деревьев, взятых с одной площадки (рис. 3 и 4). Сравнивая их, можно восстановить историю этого леса.

4. На толщину колец влияют макроклиматические условия.

Для выявления влияния климатических факторов на толщину годичных колец исследовались группы образцов, взятых с разных площадок. Внутри каждой группы проводилась проверка по абсолютному времени (чтобы избежать неточностей при определении возраста последнего кольца).

Мы исследовали деревья с трех площадок. Сравнивая графики для деревьев на каждой площадке, для дальнейшей работы отбирали графики спилов, которые были схожи между собой (коэффициент корреляции больше 0,6). В частности, были исследованы графики, полученные на так называемой «Митькинской площадке» – вырубка по дороге к д. Митькино (рис. 3 и 4).

Сравнивая деревья с разных площадок, мы ставили в соответствие графику с известной датой последнего годичного кольца остальные пригодные для анализа графики. Таким образом, мы получили ряды толщин годичных слоев, которые можно сравнивать с рядами климатических параметров в нашей местности на протяжении почти 200 лет.

На графиках толщин годичных слоев для многих деревьев наблюдается совпадение локальных минимумов, т.е. уменьшение толщин колец в определенные годы. Четко прослеживается падение роста в конце XIX в., в 1930-х гг. и в. 1968–1975 гг. Видимо это проявление влияния климата на рост деревьев.

После полной подготовки данных мы определяли совпадение критических точек, выявленных нами по кривым толщин большинства деревьев, с критическими точками на графиках температур измерявшихся с 1880 г. до наших дней (рис. 5) (Данные были получены от метеостанции г. Казани, ближайшей к нашему району.) . Было обнаружено совпадение уменьшения толщин годичных слоев у большинства образцов с падением зимних температур в период 1892–1896 гг., 1929–1932 гг., 1965–1970 гг. На некоторых образцах прослеживается совпадение замедления роста дерева с падениями зимних температур в 1940-х гг. и в 1950–1955 гг.

Рис. 5. Толщины годичнх колец и зимние температуры

Следует отметить, что мы не обнаружили никаких корреляций графиков наших спилов с летними, весенними, осенними и среднегодовыми температурными кривыми. Это не согласуется с литературными данными о том, что толщина годичных колец зависит от средней температуры за вегетационный период (март–сентябрь). Как предполагают некоторые климатологи, к которым мы обратились за консультацией, замедление роста дерева связано с увеличением глубины промерзания почвы при сильном понижения среднесуточной температуры в период с декабря по февраль. Эту гипотезу мы предполагаем, проверить в следующих исследованиях.

Выводы

1. На толщину годичных колец в наших условиях влияет очень много факторов, как локальных, так и климатических. Индивидуальный разброс между деревьями очень большой, поэтому требуется значительное количество образцов и тщательная математическая обработка.

2. Значительные минимумы на графиках толщин годичных колец оказались связанными с длительными (несколько лет) понижениями зимних температур. Возможно, на толщину колец влияют и другие климатические параметры (например, количество осадков). Этот вопрос требует дополнительного исследования.

Литература

1. Кренке А., Кислов А. История климата. /Энциклопедия для детей. Т.3. География. – М.: «Аванта +», 1994.

2. Ваганов Е.П.,Наурзбаев М.М., Хьюс М.К. Свидетели средневекового потепления климата. – Природа, 2000, № 12.

3. Бялко А.В., Гамбургиев А.Г . Статистика погоды. –Природа, 2000, № 12.

4. Николаев В. Доисторическая климатология. htth://nauka.relis.ru//05/0108/05108068/htm

Спонсор публикации статьи: компания Slomanet предоставляет услуги по высококачественному ремонту дверных замков в Москве. Воспользовавшись предложением компании, Вы сможете вызвать опытных мастеров, которые окажут такие услуги, как срочная смена замков в металлической двери , а так же вскрытые старых замков и дверей. Подробнее ознакомиться с предоставляемыми услугами можно на сайте компании Slomanet, который располагается по адресу http://www.slomanet.ru/

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Издавна человека интересовали тайные послания, которые преодолевали время и сохраняли ценную информацию для следующих поколений. Наскальные надписи, иероглифы на обнаруженных археологами предметах быта, меловые отложения на ландшафтной карте Белгородчины… Изучением этих посланий занимаются ученые разных отраслей знания. Среди них - археологи, биологи, геологи и др.

Внимание к рисункам на свежих спилах деревьев в г. Белгороде и прилегающей местности привело к предположению о том, что это тоже своеобразные «зашифрованные послания», «климатический паспорт», который многое может рассказать человеку об условиях произрастания дерева, в частности, о климате нашего региона.

Актуальность темы заключается в том, что она дает нам знания о процессах, которые происходят в окружающей среде.

Обращение к специальным источникам позволило установить, что наука, которая по годичным кольцам деревьев изучает климат прошлого и его изменения, называется дендроклиматология .

Известно, что годичные кольца деревьев сохраняют информацию о возрасте дерева, о направлениях света (север, юг, запад, восток). Интересно, а можно ли по годичным кольцам узнать об условиях произрастания деревьев: о количестве осадков, температурном режиме в интересующий нас период? Этот вопрос стал поводом для проведения данного исследования.

В книгах С.Ю. Афонькина «Деревья» 1 , Ю.К. Школьника «Растения» , в «Большой иллюстрированной энциклопедии школьника» , «Большой энциклопедии знаний» , «Детской энциклопедии: от А до Я» , «Самой большой детской энциклопедии» , источниках, которые стали ориентиром при проведении нашего исследования, содержатся сведения о том, что на рост дерева влияют как температура воздуха, так и количество осадков. Временем наиболее интенсивного роста дерева являются весна и начало лета, а с приближением осени рост замедляется. Зимой дерево пребывает в состоянии покоя. Так, например, С.Ю. Афонькин указывает: «Толщина колец свидетельствует о погоде. В холодные годы кольца получаются тоньше, в теплые сезоны - толще. В ботанике существует отдельное направление - дендрохронология (от греч. dendron - «дерево» и chronos - «время»), занимающаяся закономерностями образования годичных колец деревьев. Изучая их, например, у деревьев-долгожителей, можно узнать о климате, который был на нашей планете несколько тысяч лет назад» .

Идее о том, что годичные кольца деревьев являются источником информации о погоде, около 500 лет. Она принадлежит итальянцу Леонардо да Винчи и относится к началу 16 века . Позже ее развивали ученые разных стран (США, Австрия, Дания). В России у истоков исследований такого рода стоят ученые 19 века А.Н. Бекетов и Ф.Н. Шведов, которые впервые указали на связь между приростом годичных колец и метеорологическими факторами - температурой воздуха и осадками.

На кафедре лесоведения Сибирского федерального университета (г. Красноярск) студенты под руководством доктора биологических наук, академика РАН Е.А. Ваганова, доктора исторических наук, академика РАН В.И. Молодина осваивают дисциплину «Естественно-научные методы в археологии», обращаясь к методам дендрохронологии, дендроархеологии, дендроклиматологии при изучении вопросов, связанных с задачами археологии.

Гипотеза: годичные кольца деревьев являются своеобразным «климатическим паспортом» региона, который хранит информацию о погоде в данной местности.

Цель исследования: получить информацию о погоде в г. Белгороде и прилегающей местности на основе изучения свежих спилов деревьев.

Задачи исследования:

    установить возможность получения информации о погоде путём изучения свежих спилов деревьев;

    рассмотреть зависимость роста дерева от температуры воздуха и количества осадков, которые выпадали весной и летом;

    получить обобщённые данные о погоде на основе изучения ширины годичных колец деревьев.

Объектом исследования стали 4 образца свежих поперечных спилов деревьев: тополя, двух сосен и клёна.

Материалыработыограничены периодом с начала весны до окончания лета (март - август) и охватывают 2009 - 2015 годы. Датировка годичных колец осуществлялась от внешней части спила (со стороны коры) к центру в связи с тем, что прирост годичных колец, как известно, происходит с наружной части дерева. Измерение ширины годичных колец осуществлялось при помощи линейки (в мм). Данные о количестве осадков приводятся в соответствии с традиционными показателями (в мм).

Исследование было проведено в 3 этапа:

1 этап -сбор данных, формулировка гипотезы;

2 этап -анализ полученной информации, её сравнение с данными специалистов, составление диаграмм осадков и температуры воздуха;

3 этап - обобщение результатов, формулировка выводов.

Совместно с научными руководителями нами был составлен план работы:

1. Изучить литературу по теме исследования.

2. Провести изучение свежих спилов деревьев, найденных в г. Белгороде и прилегающей местности.

3. Получить предварительные данные о температуре воздуха и количестве осадков в г. Белгороде и прилегающей местности на основе изучения ширины годичных колец деревьев.

4. Получить и проанализировать данные о температуре воздуха и количестве осадков за исследуемый период на основе информации сайта «Гисметео.ру»: https://www.gismeteo.ru/ .

5. Посетить Белгородский центр по гидрометеорологии и мониторингу окружающей среды с целью получения данных о погоде в г. Белгороде и прилегающей местности .

6. Составить диаграммы на основе полученных данных.

7. Соотнести данные о ширине годичных колец деревьев (исследуемые образцы) и сведения о погоде.

8. Сделать выводы.

Для решения поставленных задач применялись следующие методы:

    метод сбора, анализа и обработки информации;

    метод сопоставления данных;

    метод систематизации материала.

Структура работы. Исследовательская работа состоит из введения, трех глав, заключения, списка источников и литературы, насчитывающего 10 наименований.

Глава 1

Первый этап исследования - сбор данных и формулировка гипотезы

Начальный этап работы заключался в сборе данных о ширине годичных колец деревьев и формулировке гипотезы. Образцами, подвергшимися детальному изучению (в т.ч. при помощи лупы и увеличительных возможностей компьютера), стали свежие спилы тополя, двух сосен и клена, обнаруженные в г. Белгороде и в г. Шебекино.

В специальной литературе [см.: 1; 6] была найдена информация о том, что на рост дерева в центральной полосе России влияют как температура воздуха, так и количество осадков, которые выпадают весной и летом. Эта «информация» «записывается» на годичных кольцах деревьев.

Образцом № 1, с которого началось исследование, стал спил тополя (обнаружен напротив бабушкиного дома на ул. Свободы в г. Шебекино). При помощи щётки мы очистили поверхность спила от опилок - годичные кольца стали просматриваться лучше.

Затем полили его водой - рисунок стал более чётким. После этого мы сфотографировали спил, чтобы увеличить рисунок на компьютере и рассмотреть семь внешних годичных колец. Наблюдения дали основание для первоначальной формулировки гипотезы : наиболее влажными с 2009 по 2015 год можно считать весну и лето 2014 года, а наиболее засушливыми - весну и лето 2010 года.

Для подтверждения исходной гипотезы (а она могла и не подтвердиться) и получения достоверных результатов потребовалось изучение еще нескольких образцов свежих спилов деревьев. Образцы№2 и №3 (спилы двух сосен) были обнаружены в г. Белгороде в районе ЗМК. На них было видно, что годичные кольца деревьев имеют разную ширину. Изучение увеличенных на компьютере фотографий стало еще одним подтверждением выдвинутой гипотезы.

Этот вывод подтвердился и при изучении образца №4 (спила клёна), который был обнаружен на ул. Губкина в г. Белгороде. При помощи наждачной бумаги мы отшлифовали и отполировали спилы, затем измерили ширину годичных колец линейкой и занесли эти данные в таблицу.

Данные о ширине годичных колец деревьев стали ориентиром для дальнейшего проведения исследования, в основе которого - соотнесение ширины годичных колец деревьев и количества осадков, а также температуры воздуха, выявление оснований для подтверждения гипотезы.

Глава 2.

Второй этап исследования - анализ информации, её сравнение с данными специалистов, составление диаграмм осадков и температуры воздуха

в г. Белгороде (весна - лето 2009-2015 г.)

В специальной литературе мы нашли материал о том, что на рост дерева влияют как температура воздуха, так и количество осадков. Мы выяснили, что временем наиболее интенсивного роста дерева является вторая половина весны и первая половина лета. С приближением осени рост замедляется.

В ходе изучения «Дневника погоды для школьников» , который размещен на сайте «Гисметео.ру»: https://www.gismeteo.ru/ , были получены сведения о погоде в г. Белгороде за исследуемый период.

На основании этих данных вначале на листе бумаги в клетку нами была составлена графическая «Диаграмма осадков» (№ 1) .

Далее вместе с научными руководителями на основе данных сайта «Гисметео.ру»: https://www.gismeteo.ru/ была определена среднесуточная температура воздуха для каждого месяца за исследуемый период. На основании этих данных составлена «Диаграмма температуры воздуха» (№ 2).

Также мы посетили Белгородский центр по гидрометеорологии и мониторингу окружающей среды и побеседовали с начальником отдела Светланой Юрьевной Куролесиной .

Она предоставила нам данные об осадках в г. Белгороде с марта по август 2009-2015 г. .

На основании этих данных была составлена «Диаграмма осадков» (№3) .

Полученные сведения мы сравнили с шириной годичных колец исследуемых образцов деревьев и заметили, что наша гипотеза о «климатическом паспорте» региона, «зашифрованных посланиях», которыми являются годичные кольца деревьев, подтверждается.

Глава 3.

Третий этап исследования - обобщение результатов,

формулировка выводов

Когда мы попытались сравнить образцы спилов разных пород деревьев (тополя, двух сосен и клена) между собой, стало понятно, что ширина годичных колец у разных пород деревьев в один и тот же год разная. При этом гипотеза о том, что информация о самом влажном периоде сохраняется в условном «климатическом паспорте» региона на наиболее широких годичных кольцах, а о самом засушливом - на наиболее узких годичных кольцах, подтвердилась.

Полученные данные свидетельствуют о том, что в г. Белгороде и прилегающей местности наиболее влажными можно считать весну - начало лета 2014 года. Они благоприятно сказались на росте деревьев. Это мы видим на широких годичных кольцах.

Наиболее засушливыми были весна - начало лета 2010 года. Эту информацию сохранили узкие годичные кольца.

А тепла в нашей местности для благоприятного роста деревьев весной и летом достаточно.

Заключение

Данные, полученные на основе изучения свежих спилов деревьев, произраставших в г. Белгороде и прилегающей местности, дают основание говорить о том, что годичные кольца являются своеобразным «климатическим паспортом» региона (хотя в некоторых климатических зонах у отдельных пород деревьев годичные кольца могут вообще отсутствовать).

Последовательность работы, направленной на реализацию поставленных цели и задач, ее результаты отражены в следующей таблице:

Этапы работы

Характеристика этапа

Промежуточный

вывод

1 этап

Подготовка

и изучение образцов свежих спилов деревьев

Годичные

кольца деревьев имеют разную ширину

2 этап

Анализ ширины годичных колец деревьев, работа

со специальной литературой,

интернет-источниками,

с данными Белгородского центра по гидрометеорологии и мониторингу окружающей среды

На рост дерева влияют

как температура воздуха,

так и количество осадков, которые выпадают весной и летом

3 этап

Подведение итогов исследования, выводы

Таким образом, выдвинутая гипотеза подтвердилась: годичные кольца деревьев являются своеобразным «климатическим паспортом» региона, «календарём погоды», записанным самой природой. Мы установили, что ширина годичных колец деревьев - это подсказка человеку о том, влажными или засушливыми были весна и лето. Поэтому человеку, желающему изучать климатические условия родного края, «зашифрованные послания», сохранившиеся на годичных кольцах деревьев, могут рассказать о многом. Но для этого вовсе не нужно пилить деревья. Мы изучали природные процессы по найденным спилам, которые появляются в городе в результате мероприятий по оздоровлению окружающей среды.

Список источников и литературы

    1. Афонькин С.Ю. Деревья. - СПб.: Изд-во «Балтийская книжная компания», 2012.

      Большая иллюстрированная энциклопедия школьника / пер. с англ. В. Гибадулина и др. - М.: Махаон, 2015. - С. 108-109.

      Большая энциклопедия знаний / пер. с нем. Л.С. Беловой, Е.В. Черныш. - М.: Эксмо, 2015. - С. 62-63.

      Паркер С., Стил Ф., Уокер Д. Детская энциклопедия: от А до Я / пер. с англ. Н.Г. Деркач и др. - М.: РОСМЭН, 2014. - С. 50-51.

      Уоллэйс Р. Мир Леонардо. 1452-1519 / пер. с англ. М. Карасевой. - М.: ТЕРРА, 1997.

      Феданова Ю. Самая большая детская энциклопедия. - Ростов н/Д: Владис, 2016. - С. 168-169.

      Школьник Ю.К. Растения. Полная энциклопедия. - М.: Эксмо, 2014. - С. 6-7.

      Сайт «Гисметео.ру». URL: https://www.gismeteo.ru/

      Сайт «Здоровый лес». URL: [email protected]

      Данные Белгородского центра по гидрометеорологии и мониторингу окружающей среды.

МОУ ДОД «Центр дополнительного образования детей
Георгиевского района»
Детское объединение «Исследователи природы»

Определение устойчивости растений
к засолению почвы и воздуха

Введение


Цель: изучить устойчивость некоторых растений произрастающих на территории села Новозаведенного к засолению почвы и воздуха.
Задачи:
Оценить чувствительность растений к засолению почвы и воздуха;
Определить влияние хлоридного и карбонатного засоления;
Выделить виды, обладающие относительной устойчивостью к неблагоприятному воздействию солей.

Практическая значимость исследовательской работы заключается в том, что она может быть использована службой жилищно - коммунального хозяйства при проведении озеленительных мероприятий, на уроках экологии при изучении антропогенного влияния на почву, а также при проведении занятий элективного курса «Физиология растений».

Влияние засоления на растительные организмы.
Растения, приспособленные к существованию в условиях избыточного засоления, называют галофитами (от греч. «galos» соль, «phyton» растение). Это солеустойчивые растения, произрастающие на различных почвах по берегам соленых озер и морей, и особенно на засоленных почвах в степных и пустынных областях. Все галофиты можно разделить на три группы:
1) Настоящие галофиты (эвгалофиты) наиболее солеустойчивые растения, накапливающие в вакуолях значительные концентрации солей.
2) Солевыделяющие галофиты (криногалофиты), поглощая соли, они не накапливают их внутри тканей, а выводят из клеток с помощью секреторных желёзок (гидатод), расположенных на листьях.
3) Соленепроницаемые галофиты (гликогалофиты) приспосабливаются к произрастанию на засоленных почвах благодаря накоплению в тканях органических веществ. Высокое осмотическое давление в их клетках поддерживается за счет продуктов фотосинтеза, а не минеральными солями. Клетки этих растений малопроницаемы для солей. (Сергеева, 1971) Засоление приводит к созданию в почве низкого водного потенциала, поэтому поступление воды в растение сильно затруднено. Важнейшей стороной вредного влияния солей является также нарушение процессов обмена. Работами физиолога Б. П. Строганова показано, что под влиянием солей в растениях нарушается азотный обмен, что приводит к интенсивному распаду белков, в результате происходит накопление промежуточных продуктов обмена веществ, токсически действующих на растение, таких как аммиак и другие, резко ядовитые продукты. Под влиянием солей происходят нарушения ультраструктуры клеток, в частности изменения в структуре хлоропластов. (Строгонов, 1967)
Снижение продуктивности растений в условиях хлоридного засоления определяется угнетением их роста, который является интегральной характеристикой реакции растений на изменение окружающей среды. Степень угнетения растений и снижения биомассы находится в прямой коррелятивной зависимости от концентрации соли в субстрате и продолжительности засоления. Неясен вопрос о косвенном влиянии солей на рост растений. (Уоринг, Филлипс, 1984) Некоторые авторы утверждают, что главной причиной замедления роста растений в условиях засоления следует считать не прямое влияние избытка солей в их тканях, а ослабление способности корней поставлять в побеги необходимые для их роста продукты метаболизма, т. е. замедление поступления питательных элементов из субстрата, угнетение их метаболизации в корнях и транспорта в побеги. (Удовенко,1977)
Определенный интерес представляет вопрос о различиях в уровне солеустойчивости разных органов растений. Отрицательное действие высокой концентрации солей сказывается раньше всего на корневой системе растений. При этом в корнях страдают наружные клетки, непосредственно соприкасающиеся с раствором соли. Характерной особенностью корневых систем на почвогрунтах с глубинным засолением является их поверхностное распространение. Внезапное увеличение концентраций NaCl в среде приводит к скачкообразному увеличению ионной проницаемости корневой системы. Корни растений при избытке солей теряют тургор, отмирают и, ослизняясь, приобретают темную окраску. Исследования показали, что корни более чувствительны к засолению, чем надземные органы. Однако известны и факты положительного влияния засоления субстрата на накопление массы корней при замедленном росте побегов. В стебле наиболее подвержены действию солей клетки проводящей системы, по которым раствор солей поднимается к надземным органам. При натриево- хлоридном засолении побеги короткие, быстро заканчивают свой рост. Листья также в значительной мере чувствительны к засолению. Общей реакцией для многих сельскохозяйственных культур является отмирание нижних листьев, подсыхание кончиков листьев, изменение окраски листьев от темно-зеленой к светло-зеленой с желтым оттенком явный признак солевого повреждения. (Генкель,1982)
С увеличением концентрации соли наблюдается тенденция к снижению суккулентности растений, что свидетельствует о подавлении способности к осморегуляции. С увеличением концентрации хлорида натрия растения теряют способность сохранять оводненность органов и это отрицательно сказывается на их солеустойчивости. Но в то же время разные виды растений обладают различной способностью регулировать содержание воды в своих тканях. Так С3 растения регулирует содержание воды в своих органах хуже, чем С4. (Горышина, 1979)
В результате обобщения данных о влиянии засоления среды выделены следующие факторы угнетения растении при засолении:
1) Затрудненно водоснабжения целого растения и, следовательно, отрицательные изменения в работе механизмов осморегуляции;
2) Дисбаланс минерального состава среды, в результате которого происходят нарушения минерального питания растений;
3) Стресс на сильное засоление;
4)Токсикация. (Прокофьев, 1978)
В сельскохозяйственном производстве основным методом борьбы с засолением является мелиорация засоленных почв, создание надежного дренажа и промывка почв после сбора урожая. На солонцах (почвы, содержащие много натрия) мелиорацию осуществляют с помощью гипсования, которое приводит к вытеснению натрия из почвенного поглощающего комплекса и замещению его кальцием. Внесение в почву микроэлементов улучшает ионный обмен растений в условиях засоления. Солеустойчивость растений увеличивается после применения предпосевного закаливания семян. Для семян хлопчатника, пшеницы, сахарной свеклы достаточна обработка в течение часа 3%-ным раствором NaCl с последующим промыванием водой (1,5 ч). При такой «закалке» снижается проницаемость протоплазмы для солей, повышается порог её коагуляции солями, меняется характер обмена веществ - растения, выросшие из таких семян, характеризуются более низкой интенсивностью обмена, но являются более устойчивыми к хлоридному засолению. Для закалки к сульфатному засолению семена в течение суток вымачивают в 0,2%-ном растворе сульфата магния. (Володько,1983)

Физико-географическая характеристика места исследования
Георгиевский район расположен на юге Ставропольского края. Село Новозаведенное находится на востоке Георгиевского района, на левом берегу реки Кумы, на высоте 245 метров над уровнем моря. Географическое местонахождение – 44о с. ш. и 43о в. д., это южнее умеренного пояса. Климат села – умеренно-континентальный. Лето - жаркое, средняя температура июля +26 0С, максимальная температура июля +420С. Зимы - малоснежные, средняя температура января -40С, минимальная температура января -320С. Село расположено в зоне недостаточного увлажнения, в год выпадает 400-500мм осадков. (Савельева, 2003)
Преобладают восточные, северо-восточные, западные ветры. С климатом связаны такие явления природы как туманы. Ежегодно, в последние пять лет, выпадает град Рельеф села – холмистая равнина, к северу от села начинаются Прикумские высоты до 260 м, к юго – востоку Терско – Кумская низменность. Природная зона – степь. Село находится в переходной зоне – от чернозёмных до каштановых почв, в долине реки Кумы почвы аллювиальные. (Вишнякова, 2000)

3 . Место, материал, методика исследования
При выполнении работы была использована методика, предложенная Федоровой А. И.(Практикум по экологии..,2001). Данная работа выполнялась в трех вариантах.
Объекты исследования: шелковица черная (Morus nigra), вяз мелколистный (Ulmus laevis), груша обыкновенная (Pyrus communis), черешня (Cerasus avium), вишня садовая (Cerasus vulgaris), абрикос обыкновенный(Armeniaca vulgaris), сирень обыкновенная (Syringa vulgaris), снежная ягода (Symphoricarpos albus), спирея иволистная (Spiraea salicifolia), бирючина обыкновенная (Ligustrum vulgaris), чубушник душистый (Philadelphus coronarius).
Оборудование, реактивы, материалы: цилиндры на 100мл; штативы к пробиркам; мерные пробирки; весы; разновесы; острая бритва; соли Na2CO3, NaCl; вода; веточки разных растений с 3-4 одинаковыми небольшими листьями.
Вариант 1. Влияние опудривания растений солями на их устойчивость (иллюстрирует влияние на растения ветровых отложений).
Ход работы: Ветки разных древесных растений взвешивали и уравнивали (путем подрезания) до одинаковой массы, выдерживали в воде 15 мин до их насыщения влагой, вынимали, обсушивали фильтровальной бумагой, обрабатывали смачивателем (1% раствор зеленого мыла). Роль смачивателя в естественной обстановке выполняют растворы некоторых солей, образующих гель, гуминовые и фульвокислоты, содержащиеся в эоловых переносах, а главное - выделения самих растений. После этого срез ветки быстро обновляли бритвой и ставили в сосуд большую пробирку со строго дозированным количеством водопроводной отстоянной воды. Отверстие сосуда плотно закрывали листочком станиоля, пробирки надписывали. Соли (NaCI, Na2C03) растирали в ступке до мелкодисперсного состояния. Кусочки ваты рыхло накручивали на палочку, затягивали ниткой и использовали как кисточку, которой опудривали равномерно листья, черешки, подопытных растений солями. Контроль - растения без опудривания. Ветки выставляли на рассеянный свет на 1 неделю, избегая сильного их нагревания. Затем учитывали такие признаки, как потеря тургора, появление инфильтрационных просвечивающих пятен, появление некрозов (отмершей ткани), подсыхание краев листа, их скручивание и др. Одновременно измеряли поглощение воды из пробирок, используя мерную пробирку.
Вариант 2. Влияние солевых осадков на листья растений (имитирует влияние солевых осадков на лист или выпавшей росы на солевой покров листа, т.е. действие на лист раствора солей).
Ход работы: Ветки разных видов древесных растений с одинаковым числом листьев выравнивали путем взвешивания, как в предыдущем опыте, выдерживали путем полного погружения в 5%-ных растворах солей (NaCI, Na2C03) в течение 15 минут. Контрольные ветви выдерживали в воде. Для опыта использовали не менее четырех веток каждого вида. После этого срезы быстро обновляли бритвой и ветви ставили в воду (одинаковое количество во всех опытах и контрольных вариантах). Испарение воды из пробирок предотвращали изолированием фольгой. Через 1 неделю производили оценку состояния растений и измер
·яли поглощение воды.
Вариант 3. Поглощение растениями растворов из засоленных почв (опыт имитирует состояние растений и поглощение ими растворов из засоленных почв, которое вызвано близко лежащими к поверхности засоленными грунтовыми водами).
Ход работы: Приготавливали 5 % растворы солей (NaCI, Na2C03). Наливали равное количество этих растворов в большие пробирки. Контроль - вода. Ветви растений взвешивали и уравнивали путем подрезания. Сосуды изолировали от испарения воды фольгой. Через 1 неделю производили оценку состояния растений и измеряли поглощение воды.

Результаты исследования
Влияние опудривания растений солями на их устойчивость. В данном варианте мы наблюдали влияние на растения ветровых отложений, которые содержат различные соли и переносятся ветром. Эффект засоления оценивали по визуальным наблюдениям за внешним видом растений, сравнивали их с контрольными растениями. Результаты наблюдений представлены в таблице 1. Таблица 1
Повреждение листьев растений при опудривании солями.
Название
растений
Характер повреждения листьев

Na2CO3
NaCl

Вяз мелколистный
Появление темных пятен по краям листовой пластинки
Листья пожелтели, появились коричневые пятна

Шелковица
Потеря тургора, листовая пластинка полностью побурела
Потеря тургора, листья свернулись и засохли

Груша обыкновенная
Листовая пластинка потемнела
Темные и бурые пятна

Черешня
Пожелтение вдоль центральной жилки
Часть листовой пластинки стала коричневой

Вишня
Цвет листьев не изменился
Между жилками появились темные полосы

Абрикос
Потеря тургора, усыхание нижних листьев и опадание
Потеря тургора, появление пятен, усыхание листьев

Сирень
Листья становятся грязно-бурыми.
Потеря тургора, листья становятся уродливыми, засыхают и опадают.

Снежно -ягодник белый
Листья желто-бурого цвета
Появляются пятна бурого цвета, которые превращаются в «дыры»

Бирючина
Небольшое потемнение листьев
Потемнение жилок листа

Спирея
Появление темных пятен на листья и стеблях, усыхание нижних листьев.
Появление некротических пятен

Чубушник
Потеря тургора, побурение и засыхание нижних листьев
Листья теряют тургор, поникают, засыхают

Потеря тургора у растений наблюдается на второй день после опудривания NaCl и Na2CO3. Признаки токсичности проявляются на листьях на 3-5 день при опудривании Na2CO3, и на 2-3 день NaCl. На листовых пластинках появляются некротические пятна, наблюдается сворачивание и усыхание листьев, потемнение в области жилок, выпадение некротических пятен и образование «дыр». Изменения листовых пластинок в большей степени наблюдается у чубушника, шелковицы, вяза, сирени. У вишни и бирючины листовые пластинки претерпели меньше изменений. Сравнивая степень повреждения листьев при действии NaCl и Na2CO3 можно сказать, что хлоридное засоление оказывает более сильное влияние на листья растений, чем карбонатное. Процесс поглощения воды растениями нарушается при опудривании солями. Результаты наблюдений представлены на рисунке 1.

Рис.1 Поглощение воды растениями при их опудривании солями

Из представленных на рисунке данных видно, что при опудривании солями процесс поглощения воды у большинства опытных растений нарушается. Высокая интенсивность поглощения воды при хлоридном засолении сохраняется у груши, у шелковицы процесс поглощения не происходит совсем. Превышение контрольных показателей на 13 % наблюдается у груши при карбонатном засолении, у шелковицы и черешни они ниже контрольных и составляют соответственно 12% и 13%.
Сравнивая полученные данные по изменению внешнего вида листьев и поглощению воды, были определены наиболее устойчивые к засолению воздуха растения – это вишня, груша, черешня и бирючина, менее устойчивы шелковица, абрикос, вяз, чубушник, сирень.
Влияние солевых растворов на листья растений. В этом варианте изучалось влияние солевых осадков на лист или выпавшей росы на покров листа, т.е. действие на лист раствора солей. Результаты наблюдений за изменениями внешнего вида растений представлены в таблице 2.
Таблица 2
Повреждение листьев растворами солей
Название растения
Характер повреждения листьев

Na2CO3
NaCl

Вяз мелколистный
Листья теряют тургор, поникают.
Скручивание и усыхание листьев

Шелковица
По краям листьев появляется узкая полоса, а между жилками - пятна желтовато-зеленого цвета.
Обесцвечивание листьев

Груша обыкновенная
Листья приобретают темную окраску
Появление сквозных пятен

Черешня
Появление темных полос вдоль жилок листьев
Небольшое количество мелких, темных пятен

Вишня
Появление темно-коричневых каймы по краю листа
Появление точек по краям листа, побурение верхних листьев

Абрикос
Появление желтых и белых пятен, засыхание листа
Потеря тургора, осветление и усыхание листьев

сирень
Листья грязно- фиолетового цвета
Вдоль жилок темные полосы

Снежно -ягодник белый
Коричневые пятна на листьях
Некротичные пятна выпадают, оставляя “дыры” на листьях

Бирючина
Появление бурых пятен
Появление темных полос вдоль жилок

Спирея
Желтая кайма по краю листьев
Потемнение листьев

Чубушник
Потеря тургора, засыхание
Быстрое усыхание, скручивание и опадание листьев

Изменение окраски листьев, и потеря тургора у большинства растений происходит на следующий день после обработки побегов растворами солей. По краю листьев появляются светло-зеленые пятна. Некроз впервые же дни быстро разрастается. Цвет листьев становится бурым, края загибаются, происходит опускание кончиков побегов вниз, верхняя часть побега быстро засыхает. На 5-7-й день наблюдается опадание листьев. По степени поражения листовой пластинки относительную устойчивость к раствору карбоната натрия проявляют черешня, вишня, спирея не устойчивы чубушник, шелковица, вяз. К хлориду натрия устойчивы вишня и бирючина. В этом варианте, как и в первом, действие хлорида натрия на опытные растения проявляется в большей степени, что заметно по морфологическим изменениям на листовых пластинках.
Результаты поглощения воды растениями после их обработки растворами солей представлены на рисунке 2.

Рис.2 Поглощение воды растениями при действии на листья 5% растворов солей
Проведенные измерения показали, что интенсивность поглощения воды у большинства растений выше при обработке их раствором NaCl. Следовательно, в условиях карбонатного засоления у растений более явно выражено снижение процесса поглощения воды. В большей степени поглощение воды снизилось у чубушника и спиреи, у черешни, снежной ягоды, груши поглощение воды снизилось в меньшей степени.
Сопоставляя полученные данные можно сказать, что наиболее устойчивы к влиянию солевых растворов растения черешни, снежная ягода, груша.
Поглощение растениями растворов солей из засоленных почв
Данный опыт имитирует состояние растений и поглощение ими растворов из засоленных почв, которое вызвано близко лежащими к поверхности засоленными грунтовыми водами. Результаты повреждения листьев при поглощении растворов NaCl и Na2CO3 представлены в таблице 3.
Таблица 3
Повреждение листьев при поглощении растворов
NaCl и Na2CO3 5%концентрации
Название растения
Характер повреждения листьев

5% NaCl
5% Na2CO3

Вяз мелколистный
Потеря тургора, листья пожелтели
Потеря тургора, появление темных пятен

Шелковица
Потеря тургора, усыхание листьев
Потеря тургора, сворачивание и усыхание листьев

Груша обыкновенная
Потеря тургора
Потеря тургора, появление белых полосок в нижних частях листьев

Черешня
Потеря тургора
вдоль центральной жилки

Вишня
Потеря тургора
Потеря тургора побурение листьев вдоль центральной жилки

Абрикос
Потеря тургора, потемнение жилок, сворачивание края листа
Потеря тургора, выпадение некротических пятен

сирень
Потеря тургора, побурение листьев
Потеря тургора, появление больших черных пятен

Снежно -ягодник белый
Потеря тургора, побурение листьев
Потеря тургора, побурение листьев, появление больших черных пятен

Бирючина
Потеря тургора, появился белый солевой налет
Потеря тургора, появление солевых пятен, выпадение некротических пятен

Спирея
Потеря тургора, частичное побурение листьев

Чубушник
Потеря тургора, некротических пятен мало
Потеря тургора, появление солевых пятен

При поглощении растениями растворов NaCl и Na2CO3 5% концентрации потеря тургора происходит на следующий день после закладки опыта у всех растений кроме спиреи. Изменения на листьях в 5%растворе хлористого натрия появляются на 3-5 день, в растворе карбоната натрия на следующий день. Более сильное действие карбоната натрия можно объяснить тем, что сода распадается, образуя сильную щелочь (гидроксид натрия). (Алешин, 1985) Черешки и жилки листьев опытных растений приобретают коричневый цвет. В меньшей степени изменения листьев наблюдается у спиреи, вишни, черешни, груши у остальных растений заметны более значительные повреждения у бирючины на листьях появился белый солевой налет.
Поглощение растениями растворов солей вызывает не только изменение листовых пластинок, но и нарушает процесс поглощения воды в растениях. Результаты поглощения воды растениями в данном опыте представлены на рисунке 3.

Рис. 3 Поглощение воды растениями из растворов солей 5% концентрации
При поглощении растворов растения в большей степени теряют способность поглощать воду, и это отрицательно сказывается на солеустойчивости. Из представленных на рисунке данных видно, что в большей степени на поглощение воды растениями влияет 5% раствор Na2CO3 , в то же время разные виды растений обладают различной способностью к поглощению воды в условиях засоления. Вяз, вишня, снежная ягода, поглощают больше воды, следовательно, они более солеустойчивы.
Таким образом, фактор засоления отрицательно сказывается на жизнедеятельности растений. Засоление приводит к изменению анатомо-морфологической структуры листьев, снижению поглощения воды. Солеустойчивость растений связана с их способностью накапливать в клетках и тканях минеральные соли или подвижные органические соединения

Выводы

После анализа результатов полученных в ходе исследования можно сделать выводы:
Чувствительность разных растений к засолению неодинакова, она не совпадает при оценке разных показателей, при засолении воздуха наиболее чувствительны листовые пластинки, при засолении почвы в большей степени нарушается поглощение воды;
При засолении воздуха в большей степени проявляется действие хлоридного засоления, при засолении почвы карбонатного;
Среди опытных растений можно выделить виды, обладающие относительной устойчивостью к засолению почвы спирея, вишня, снежная ягода, вяз;
Относительной устойчивостью к засолению воздуха обладают вишня, груша, черешня, бирючина, сирень, абрикос, снежная ягода.

Литература
Алешин Е.П. Физиология растений.- М.: Агропромиздат,1985
Володько И.К. Микроэлементы и устойчивость растений к неблагоприятным условиям.- Минск: Наука и техника, 1983
Вишнякова В.Ф. Экология Ставропольского края. – Ставрополь, 2000.
Горышина Т.К. Экология растений. уч. Пособие для ВУЗов,- М.: В. школа, 1979
Генкель П.А. Физиология жаро - и засухоустойчивость растений.- М.:, Наука,1982
Прокофьев А.А. Проблемы засухоустойчивости растений.- М.: Наука, 1978
Савельева В.В. География Ставропольского края. – Ставрополь, 2003.
Сергеева К.А. Физиологические и биохимические основы зимостойкости древесных растений.- М.: Наука, 1971
Строгонов Б. П. Физиология сельскохозяйственных растений. т. 3, - М.; 1967
10. Уоринг Ф., Филлипс И. Рост растений и дифференцировка. - М.: Мир, 1984
11. Удовенко Г. В., Солеустойчивость культурных растений. - Л.; 1977
12. Фёдорова А.И., Никольская А.Н. Практикум по экологии и охране окружающей среды. – М.: Владос, 2001.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!