Про ванную комнату - Потолок. Ванные. Кафель. Оборудование. Ремонт. Сантехника

Транспорт веществ в организме. Передвижение веществ в растении

1. Транспорт сквозь липидный бислой мембраны (простая диффузия) и транспорт при участии мембранных белков

2. Активный и пассивный транспорт

3. Симпорт, антипорт и унипорт

Легче всего проходят через липидный бислой неполярные молекулы с малой молекулярной массой (например, кислород, азот, бензол). Достаточно быстро проникают сквозь липидный бислой такие мелкие полярные молекулы, как углекислый газ, оксид азота, вода, мочевина. С заметной скоростью проходят через липидный бислой этанол и глицерин, а также стероидные и тиреоидные гормоны. Для более крупных полярных молекул (глюкоза, аминокислоты), а также для ионов липидный бислой практически непроницаем, так как его внутренняя часть гидрофобна.

Перенос крупных полярных молекул и ионов происходит благодаря белкам-каналам или белкам-переносчикам. Так, в мембранах клеток существуют каналы для ионов натрия, калия и хлора, а также белки-переносчики для глюкозы, аминокислот и других молекул. Есть даже специальные водные каналы – аквапорины.

Пассивный транспорт - транспорт веществ по градиенту концентрации , не требующий затрат энергии. Пассивно происходит транспорт гидрофобных веществ сквозь липидный бислой мембраны (∆G<0). Пассивно пропускают через себя вещества все белки-каналы и некоторые белки-переносчики. Пассивный транспорт с участием мембранных белков называют облегченной диффузией . Другие белки-переносчики (их иногда называют белки-«насосы») переносят через мембрану вещества с затратами энергии, которая выделяется при гидролизе АТФ. Этот вид транспорта осуществляется против градиента концентрации переносимого вещества и называется активным транспортом .

Мембранный транспорт веществ различается также по направлению их перемещения и количеству переносимых данным белком-переносчиком веществ:

1) Унипорт - транспорт одного вещества в одном направлении в зависимости от градиента концентрации.

2) Симпорт - транспорт двух веществ в одном направлении с помощью одного переносчика.

3) Антипорт - перемещение двух веществ в разных направлениях посредством одного переносчика.

Основные механизмы перемещения веществ через мембрану изображены на следующей схеме:

Унипорт осуществляет потенциал-зависимый натриевый канал, через который в клетку во время генерации потенциала действия перемещаются катионы натрия.

Симпорт осуществляет переносчик глюкозы, расположенный на внешней (обращенной в просвет кишечника) стороне клеток кишечного эпителия. Этот белок захватывает одновременно молекулу глюкозы и катион натрия и, меняя свою конформацию, переносит оба вещества внутрь клетки. При этом используется энергия электрохимического градиента, который, в свою очередь, создается за счет гидролиза АТФ ферментом - натрий-калиевой АТФ-азой.



Антипорт осуществляет натрий-калиевая АТФаза. Она переносит в клетку 2 катиона калия, а из клетки выводит 3 катиона натрия.

Работа натрий-калиевой АТФазы - пример активного транспорта посредством антипорта.

Механизмы транспорта крупных фрагментов (биомолекул)

Эндоцитоз - захват клеткой крупного фрагмента. Сначала мембрана окружает этот фрагмент, образуя пузырек – первичную фагосому, затем этот пузырек сливается с органеллой клетки - лизосомой, где фрагмент вещества расщепляется ферментами лизосомы.

Захват жидкости называется пиноцитозом , захват твердого вещества - фагоцитозом .

Процесс выделения из клетки крупных фрагментов называется экзоцитозом , он происходит через аппарат Гольджи.

Пример лекарственного противоопухолевого препарата, блокирующего транспорт через мембраны.

Трансплантированные в организм лабораторной мыши человеческие эстроген-позитивные раковые клетки молочной железы гибли под действием лекарства, которое блокирует транспорт питательных веществ. Это единственный транспорт, с помощью которого могут поступать все незаменимые аминокислоты, необходимые клетке для выживания, в т.ч. опухолевой. Другой вид раковых клеток (эстроген-негативные) не подвержен действию лекарства. Препарат разработан на основе аминокислоты - альфа-метил-(D,L)-триптофана. Вещество способно лишать питания только клетки, которые используют этот вид транспорта. Открытие позволит победить рак молочной железы, который не поддается лечению традиционными средствами такими, как тамоксифен* или кломид*.

*Кломид (кломифен) и тамоксифен (нолвадекс) являются антиэстрогенами, принадлежащими к одной группе химических веществ - трифенилэтиленов.

ЛЕКЦИЯ № 4
Буферные растворы. Буферные системы организма человека

Неорганические буферные системы.

Уравнение Гассельбаха-Гендерсона для буферов I и II типа.

Органические буферные системы.

Буферные системы организма человека.

Цель: изучить общие свойства буферных систем, ознакомить с буферными системами организма и их функционированием.

Литература : Березов Т. Т., Коровкин Б. Ф. Биологическая химия: Учебник под. ред. акад. АМН СССР С.С. Дебова.- 2-е изд., перераб. и доп.- М.: Медицина, 1990. 528 с.

Актуальность. Буферные системы широко представлены в живых организмах, в т.ч. у человека. Буферы используют для лабораторных исследований, а также как среду при хранении клеток тканей. Буферные растворы с правильно подобранным составом применяют для коррекции электролитного состава и рН крови у больных (ацидоз, алкалоз ). Для этих целей буферные растворы специально готовят, предварительно рассчитывая их состав так, чтобы электролитный состав и рН системы соответствовал целям использования.

Буферными (buffer , buff - смягчать удар) называют растворы с устойчивой концентрацией ионов Н + , т.е. рН которых не изменяется при разбавлении и добавлении небольших количеств сильной кислоты или сильного основания. Любой буфер содержит минимум 2 вещества, одно из которых способно связывать протоны Н + , а второе связывает гидроксильные группы ОН - в малодиссоциируемые соединения .

Ответы к школьным учебникам

В процессе транспорта веществ они поставляются из мест поступления в организм из окружающей среды или мест образования их в организме к органам, которым данные вещества необходимы для жизнедеятельности. Так, у млекопитающих кислород, поступающий в легкие, благодаря транспортной системе переносится ко всем клеткам животного организма, а углекислый газ, напротив, транспортируется к легким и выводится во внешнюю среду.

2. Как происходит перенос веществ у одноклеточных организмов?

У одноклеточных организмов различные вещества переносятся движением цитоплазмы. Например, у амебы это происходит в процессе ее движения, при котором цитоплазма перетекает из одной части тела в другую. Содержащиеся в ней вещества перемешиваются и разносятся по всей клетке. У инфузории туфельки - простейшего с постоянной формой тела - передвижение пищеварительного пузырька и распределение питательных веществ по всей клетке достигается непрерывным круговым движением цитоплазмы.

3. Какова роль кровеносной системы?

Кровеносная система, состоящая из сосудов, обеспечивает доступ крови ко всем органам и тканям организма и осуществляет одну из важнейших функций - транспорт веществ и газов.

4. Что такое кровь?

5. Из чего состоит кровь?

Кровь - один из видов соединительной ткани, циркулирующая по кровеносной системе. Кровь разносит по организму питательные вещества и кислород, выносит углекислый газ и другие продукты распада. Кровь состоит из бесцветной жидкости - плазмы и клеток крови. Различают красные и белые кровяные клетки, а также кровяные пластинки. Красные кровяные клетки придают крови красный цвет, так как в их состав входит особое вещество - пигмент гемоглобин (от греч. «тема» - кровь и лат. «глобулюс» - шарик). Соединяясь с кислородом, гемоглобин разносит его по всему организму. Таким образом, кровь выполняет дыхательную функцию. Белые кровяные клетки выполняют защитную функцию: они уничтожают попавшие в организм болезнетворные микроорганизмы. Кровяные пластинки участвуют в процессе свертывания крови. Так, при ранении, благодаря кровяным пластинкам, кровь в месте раны свертывается, и кровотечение останавливается.

6. Что такое устьица, где они расположены?

7. Как осуществляется передвижение воды и минеральных веществ в растении?

Вода и растворенные в ней минеральные вещества передвигаются в растении от корней к надземным частям по сосудам древесины.

8, По какой части стебля передвигаются органические вещества?

Органические вещества передвигаются из листьев в другие части растения по ситовидным трубкам луба.

9. В чем заключается роль корневых волосков? Что такое корневое давление?

10. Каково значение испарения воды листьями?

Через корневые волоски в растение поступает вода. Покрытые слизью, тесно соприкасаясь с почвой, они всасывают воду с растворенными в ней минеральными веществами. Затем вода по сосудам корня под давлением поднимается в другие, надземные органы растения. Корневое давление - это сила, вызывающая одностороннее движение воды от корней к побегам.

Вода испаряется с поверхности клеток листа в виде пара и через устьица выходит в атмосферу. Этот процесс обеспечивает непрерывный восходящий ток воды по растению. Отдав воду, клетки мякоти листа, подобно насосу, начинают интенсивно поглощать ее из окружающих их сосудов, куда вода поступает по стеблю из корня.

Тест по биологии Транспорт веществ в организме для учащихся 6 класса с ответами. Тест состоит из 2 вариантов в каждом по 10 заданий.

1 вариант

1. Перемещение питательных веществ по клетке обеспечивает

1) ядро
2) хлоропласт
3) цитоплазма
4) хромосома

2. Вода и растворённые в ней минеральные вещества передви­гаются в растении по

1) сосудам древесины
2) клеткам луба
3) сердцевине
4) кожице

3. Транспорт веществ и газов по организму дождевого червя осуществляет

1) скелетная мускулатура
2) кровеносная система
3) нервная система
4) лёгкие

4. Уничтожают попавшие в организм млекопитающего жи­вотного болезнетворные микробы

1) сосуды
2) сердце
3) красные кровяные клетки
4) белые кровяные клетки

5. Все ткани и органы крысы пронизывают

1) кровеносные капилляры
2) механические волокна
3) сосуды луба
4) клетки проводящей ткани

6. Кровеносная система достигает наибольшего развития у

1) червеобразных организмов
2) членистоногих животных
3) моллюсков
4) птиц и зверей

7. В организме растения одностороннее движение воды от корней к побегам обеспечивает

1) фотосинтез
2) газообмен
3) дыхание
4) корневое давление

8. На рисунке изображено серд­це земноводного животного. Ка­кой отдел сердца обозначен циф­рой 1?

1) желудочек
2) предсердие
3) артерия
4) вена

9.

А. Кровеносная система рыбы не имеет сердца и состоит только из сосудов.
В. Транспорт питательных веществ в организме животных обеспечивает кровь и гемолимфа.

1) верно только А
2) верно только В
3) верны оба суждения
4) неверны оба суждения

10. Установите верную последовательность движения крови по сосудам, начиная от сердца.

1) сердце
2) капилляры
3) вены
4) артерии

2 вариант

1. У одноклеточных организмов передвижение веществ и ор­ганоидов внутри клетки достигается движением

1) ядра
2) пластид
3) вакуолей
4) цитоплазмы

2. В цветковом растении органические вещества передвига­ются по

1) сосудам древесины
2) клеткам луба
3) сердцевине
4) кожице

3. Транспорт кислорода по организму крысы осуществляет

1) дыхательная система
2) красные кровяные клетки
3) белые кровяные клетки
4) плазма крови

4. В теле насекомых в кровеносной системе циркулирует

1) вода с растворёнными в ней минеральными веществами
2) плазма крови
3) гемолимфа
4) пищеварительный сок

5. Кровь от сердца к органам и тканям по телу собаки транс­портируют

1) вены
2) капилляры
3) артерии
4) механические волокна

6. Движение крови по сосудам животного обеспечивается со­кращением

1) отделов сердца
2) стенок желудка
3) капиллярной сети
4) органов дыхания

7. Восходящий ток воды по растению обеспечивает

1) фотосинтез
2) испарение воды
3) дыхание
4) деление клеток

8. На рисунке изображено сердце земноводного животного. Какой отдел сердца обозначен цифрой 2?

1) желудочек
2) предсердие
3) артерия
4) вена

9. Верны ли следующие утверждения?

А. Кровь состоит из плазмы и клеток.
Б. Позвоночные животные обладают кровеносной системой замкнутого типа.

1) верно только А
2) верно только Б
3) верны оба суждения
4) неверны оба суждения

10. Установите верную последовательность движения крови в сердце крысы, начиная с вен.

1) вены
2) артерии
3) желудочки
4) предсердия

Ответ на тест по биологии Транспорт веществ в организме
1 вариант
1-3
2-1
3-2
4-4
5-1
6-4
7-4
8-2
9-2
10-1423
2 вариант
1-4
2-2
3-2
4-3
5-3
6-1
7-2
8-1
9-3
10-1432

Ответы на билеты по биологии 2006г. 9 класс

Билет№1

1. №1. Взаимосвязь пластического и энергетического обмена веществ

Постоянное взаимодействие каждого живого организма с окружающей средой. Поглощение из окружающей среды одних веществ и выделение в нее продуктов жизнедеятельности. Обмен веществ между организмом и средой - главный признак живого. Поглощение растениями и некоторыми бактериями из окружающей среды неорганических веществ и энергии солнечного света, использование их на создание органических веществ. Поглощение растениями и животными из окружающей среды кислорода в процессе дыхания и выделение углекислого газа. Получение из окружающей среды животными, грибами, большинством бактерий, человеком органических веществ и запасенной в них энергии.

2. Сущность обмена. Обмен веществ и превращения энергии в клетке - совокупность химических реакций образования органических веществ с использованием энергии и расщепления органических веществ с освобождением энергии.

3. Пластический обмен - совокупность реакций синтеза органических веществ, из которых образуются структуры клетки, обновляется ее состав, а также синтезируются ферменты, необходимые для ускорения химических реакций в клетке. Синтез сложного органического вещества - белка - из менее сложных органических веществ - аминокислот - пример пластического обмена. Роль ферментов в ускорении химических реакций, использование энергии на синтез органических веществ, освобожденной в процессе энергетического обмена.

4. Энергетический обмен - расщепление сложных органических веществ (белков, жиров, углеводов) до простых веществ (в конечном счете, до углекислого газа и воды) с освобождением энергии, используемой в процессах жизнедеятельности. Дыхание - пример энергетического обмена, в процессе которого поступивший из воздуха в клетку кислород окисляет органические вещества и при этом освобождается энергия. Участие в энергетическом обмене ферментов, которые синтезировались в процессе пластического обмена, в ускорении реакций окисления органических веществ.

5. Взаимосвязь пластического и энергетического обмена: пластический обмен поставляет для энергетического обмена органические вещества и ферменты, а энергетический обмен поставляет для пластического - энергию, без которой не могут идти реакции синтеза. Нарушение одного из видов клеточного обмена ведет к нарушению всех процессов жизнедеятельности, к гибели организма.

№2. Усложнение организации растений в процессе эволюции. Причины эволюции

1. Водоросли. Одноклеточные водоросли- наиболее просто организованные растения. Появление в результате изменчивости и наследственности многоклеточных водорослей, сохранение особей с этой полезной особенностью естественным отбором.

2. Происхождение от древних водорослей более сложных растений - псилофитов, а от них - мхов и папоротников. Появление у мхов органов - стебля и листьев, а у папоротников - корня и более развитой проводящей системы.

3. Происхождение от древних папоротников благодаря наследственности и изменчивости, действию естественного отбора более сложных растений древних голосеменных, у которых появилось семя. В отличие от споры (одной специализированной клетки, из которой развивается новое растение) семя - многоклеточное образование, имеющее сформировавшийся зародыш с запасом питательных веществ и покрытое плотной кожурой. Значительно большая вероятность появления нового растения из семени, чем из споры, имеющей небольшой запас питательных веществ.

4. Происхождение от древних голосеменных более сложных растений - покрытосеменных, у которых появился цветок и плод. Роль плода - защита семени от неблагоприятных условий и увеличение вероятности их широкого распространения в природе.

5. Усложнение строения растений от водорослей до покрытосеменных в течение многих тысячелетий благодаря способности изменяться, передавать изменения по наследству и благодаря действию естественного отбора.

№3. Определение увеличения школьного микроскопа, подготовка его к работе

Увеличение школьного микроскопа определяют путем умножения цифр на объективе и окуляре, указывающих на их увеличение. Для работы с микроскопом его надо поставить штативом к себе, навести зеркалом свет на отверстие предметного столика, положить на столик микропрепарат, закрепить его зажимами, опустить тубус вниз, не повреждая микропрепарат, а затем, глядя в окуляр, медленно с помощью винтов поднять тубус до получения четкого изображения.

Билет 2.

№1. Дыхание организмов, его сущность и значение.

1. Сущность дыхания- окисление органических веществ в клетках с освобождением энергии, необходимой для процессов жизнедеятельности. Поступление необходимого для дыхания кислорода в клетки тела растений и животных: у растений через устьица, чечевички, трещины в коре деревьев; у животных - через поверхность тела (например, у дождевого червя), через органы дыхания (трахеи у насекомых, жабры у рыб, легкие у наземных позвоночных и человека). Транспорт кислорода кровью и поступление его в клетки различных тканей и органов у многих животных и человека. 2. Участие кислорода в окислении органических веществ до неорганических, освобождение при этом полученной с пищей энергии, использование ее во всех процессах жизнедеятельности. Поглощение кислорода организмом и удаление из него углекислого газа через поверхность тела или органы дыхания - газообмен. 3. Взаимосвязь строения и функций органов дыхания. Приспособленность органов дыхания, например у животных и человека, к выполнению функций поглощения кислорода и выделения углекислого газа: увеличение объема легких человека и млекопитающих животных за счет огромного числа легочных пузырьков, пронизанных капиллярами, возрастание поверхности соприкосновения крови с воздухом, повышение за счет этого интенсивности газообмена. Приспособленность строения стенок дыхательных путей к движению воздуха при вдохе и выдохе, очищению его от пыли (реснитчатый эпителий, наличие хрящей). 4. Газообмен в легких. Обмен газов в организме путем диффузии. Поступление в легкие по артериям малого круга кровообращения венозной крови, содержащей небольшое количество кислорода и большое количество углекислого газа. Проникновение в плазму венозной крови кислорода из легочных пузырьков и капилляров путем диффузии через их тонкие стенки, а затем в эритроциты. Образование непрочного соединения кислорода с гемоглобином - оксигемоглобина. Постоянное насыщение плазмы крови кислородом и одновременное выделение из крови в воздух легких углекислого газа, превращение венозной крови в артериальную. 5. Газообмен в тканях. Поступление по большому кругу кровообращения артериальной, насыщенной кислородом и бедной углекислым газом крови в ткани. Поступление кислорода в межклеточное вещество и клетки тела, где его концентрация значительно ниже, чем в крови. Одновременное насыщение крови углекислым газом, превращение ее из артериальной в венозную. Транспорт углекислого газа, образующего непрочное соединение с гемоглобином, в легкие.

2. Царство растений. Строение и жизнедеятельность растений, роль в природе и жизни человека

1. Характеристика царства растений. Разнообразие растений: водоросли, мхи, папоротники, голосеменные, покрытосеменные (цветковые), их приспособленность к различным условиям среды. Общие черты растений: растут всю жизнь, практически не перемещаются с одного места на другое. Наличие в клетке прочной оболочки из клетчатки, которая придает ей форму, и вакуолей, заполненных клеточным соком. Главная особенность растений - наличие в их клетках пластид, среди которых ведущая роль принадлежит хлоропластам, содержащим зеленый пигмент - хлорофилл. Способ питания автотрофный: растения самостоятельно создают органические вещества из неорганических с использованием солнечной энергии (фотосинтез).
2. Роль растений в биосфере. Использование солнечной энергии для создания органических веществ в процессе фотосинтеза и выделение при этом кислорода, необходимого для дыхания всех живых организмов. Растения - производители органического вещества, обеспечивающие самих себя, а также животных, грибы, большинство бактерий и человека пищей и заключенной в ней энергией. Роль растений в круговороте углекислого газа и кислорода в атмосфере.

№3.Рассмотрите готовый микропрепарат простейшего и назовите его вид.

Вольвокс Volvox globator (может быть заменен на другой микропрепарат)

Вольвокс представляет собой многоклеточную шаровидную колонию, состоящую из большого количества жгутиковых одноклеточных особей, включенных в студенистое вещество и объединенных между собой цитоплазматическими мостиками. Каждая особь имеет два жгутика. Внутри вольвокса видны дочерние колонии.

Билет №3

Транспорт веществ в живых организмах.

1. Передвижение воды и минеральных веществ в растении. Поглощение воды и минеральных веществ корневыми волосками, расположенными в зоне всасывания корня. Передвижение воды и минеральных веществ по сосудам - проводящей ткани корня, стебля, листа. Сосуды - длинные полые трубки, образованные одним рядом клеток, между которыми растворились поперечные перегородки. 2. Корневое давление - сила, благодаря которой вода и минеральные вещества передвигаются по стеблю в листья. Роль корневого давления в перемещении воды и минеральных веществ из сосудов корня в жилки, а затем в клетки листа. Жилки - сосудисто-волокнистые пучки листа. Испарение воды листьями за счет непрерывного движения воды из корней вверх к листьям. Устьица - щели, ограниченные двумя замыкающими клетками, их роль в испарении воды: периодическое открывание и закрывание в зависимости от условий среды. 3. Сосущая сила, возникающая в результате испарения воды, и корневое давление - причины передвижения минеральных веществ в растении. Путь воды из корня в листья - восходящий ток. Короткий восходящий ток у травянистых растений, длинный - у деревьев. Передвижение воды и минеральных веществ у ели на высоту до 30 м, у эвкалипта - до 100 м. Опыт со срезанной веткой, помещенной в подкрашенную чернилами воду, - доказательство передвижения воды по сосудам древесины. 4. Передвижение органических веществ в растении. Образование органических веществ в клетках растений с хлоропластами в процессе фотосинтеза. Их использование всеми органами в процессе жизнедеятельности: рост, дыхание, движение. Передвижение органических веществ по ситовидным трубкам - живым тонкостенным удлиненным клеткам, соединенным узкими концами, пронизанными порами. Кора дерева, наличие в ней луба с лубяными волокнами и ситовидными трубками. Передвижение органических веществ из листьев во все органы - нисходящий ток. Опыт с окольцованной веткой, помещенной в сосуд с водой, - доказательство передвижения органических веществ по ситовидным трубкам луба. 5. Движение крови в организме человека по двум кругам кровообращения - большому и малому. Поступление крови по большому кругу к клеткам тела, а по малому - в легкие. 6. Большой круг кровообращения. Выталкивание из левого желудочка сердца насыщенной кислородом артериальной крови в аорту, которая разветвляется на артерии. Поступление по ним крови в капилляры - самые мелкие сосуды со множеством отверстий. Отдача кислорода капиллярами клеткам тела и поступление из клеток углекислого газа в капилляры. Насыщение крови в капиллярах углекислым газом, превращение ее в венозную. Движение венозной крови по венам в правое предсердие. 7. Малый круг кровообращения. Выталкивание венозной крови из правого желудочка в легочную артерию, которая разветвляется на множество капилляров, оплетающих легочные пузырьки. Диффузия кислорода из легочных пузырьков в капилляры - превращение венозной крови в артериальную. Поступление углекислого газа из капилляров в легочные пузырьки путем диффузии. Удаление углекислого газа из организма при выдохе. Возвращение по венам малого круга артериальной крови, насыщенной кислородом, в левое предсердие.

Вопр.2 Усложнение организации хордовых в процессе эволюции. Причины эволюции.

1. Первые хордовые. Хрящевые и костные рыбы. Предки хордовых - двусторонне-симметрич-ные животные, похожие на кольчатых червей. Активный образ жизни первых хордовых. Происхождение от них двух групп животных: малоподвижных (в том числе предков современных ланцетников) и свободноплавающих, с хорошо развитым позвоночником, головным мозгом и органами чувств. Происхождение от древних свободноплавающих хордовых предков хрящевых и костных рыб.
2. Более высокий уровень организации костных рыб по сравнению с хрящевыми: наличие плавательного пузыря, более легкого и прочного скелета, жаберных крышек, более совершенного способа дыхания, что позволило костным рыбам широко распространиться в пресных водоемах, морях и океанах.

3. Происхождение древних земноводных. Одна из групп древних костных рыб - кистеперые. В результате наследственной изменчивости и действия естественного отбора формирование у кистеперых рыб расчлененных конечностей, приспособлений к воздушному дыханию, развитие трехкамерного сердца. Происхождение от кистеперых рыб древних земноводных.
4. Происхождение древних пресмыкающихся. Среда обитания древних земноводных - влажные места, берега водоемов. Проникновение в глубь суши их потомков - древних пресмыкающихся, у которых появились приспособления к размножению на суше, вместо слизистой железистой кожи земноводных сформировался роговой покров, предохраняющий тело от высыхания.

5. Происхождение птиц и млекопитающих. Древние пресмыкающиеся - предки древних высших позвоночных - птиц и млекопитающих. Признаки более высокой их организации: высокоразвитая нервная система и органы чувств; четырех-камерное сердце и два круга кровообращения, исключающие смешивание артериальной и венозной крови, более интенсивный обмен веществ; высокоразвитая система органов дыхания; постоянная температура тела, теплорегуляция и др. Более сложное и прогрессивное среди млекопитающих развитие приматов, от которых произошел человек.

Билет № 3 вопр 3.

Приготовьте и рассмотрите под микроскопом микропрепарат (кожицы чешуи лука или листа элодеи). Зарисуйте клетку и подпишите ее части.

На предметное стекло наносят 2-3 капли подкрашенной йодом воды. Образец обычно берется в виде очень тонкого прозрачного слоя или среза; его кладут на прямоугольную стеклянную пластинку, называемую предметным стеклом, и накрывают сверху более тонкой стеклянной пластинкой меньших размеров, называемой покровным стеклом. Образец часто окрашивают химическими веществами, чтобы увеличить контраст. Предметное стекло кладут на предметный столик так, чтобы образец находился над центральным отверстием столика. Клетку зарисовывают схематично. (В кожице лука нет хлоропластов)

Билет 4.

№1.Химический состав клетки. Роль воды и неорганических веществ в жизнедеятельности клетки.

1. Элементарный состав клетки. Сходство химического состава клеток разных организмов как доказательство их родства. Основные химические элементы, входящие в состав клетки: кислород, углерод, водород, азот, калий, сера, фосфор, хлор, магний, натрий, кальций, железо.

2. Роль различных химических элементов в клетке. Кислород, углерод, водород и азот - основные химические элементы, из которых состоят молекулы органических веществ. Такие элементы, как калий, натрий и хлор, - входят в состав плазмы крови, участвуют в обмене веществ и обеспечивают постоянство внутренней среды организма - гомеостаз.
Сера - элемент, входящий в состав некоторых белков, фосфор входит в состав всех нуклеиновых кислот, магний - хлорофилла, железо - гемоглобина (гемоглобин - белок, входящий в состав эритроцитов и обеспечивающий перенос кислорода и углекислого газа в организме), кальций - костей, раковин моллюсков.

3. Химические вещества, входящие в состав клетки: неорганические (вода, минеральные соли) и органические (углеводы, жиры, белки, нуклеиновые кислоты, АТФ).

4. Минеральные соли, их роль в клетке. Содержание минеральных солей в клетке в виде катионов (К+, Na+, Ca2+, Mg2+) и анионов (-НРО|~, - Н2РС>4, -СГ, -НСС*з). Уравновешенность содержания катионов и анионов в клетке, обеспечивающая постоянство внутренней среды организма. Примеры: в клетке среда слабощелочная, внутри клетки высокая концентрация ионов К+, а в окружающей клетку среде - ионов Na+. Участие минеральных солей в обмене веществ.

Обеспечение упругости клетки. Последствия потери клеткой воды - увядание листьев, высыхание плодов;

Ускорение химических реакций за счет растворения веществ в воде;

Обеспечение перемещения веществ: поступление большинства веществ в клетку и удаление их из клетки в виде растворов;

Обеспечение растворения многих химических веществ (ряда солей, Сахаров);

Участие в ряде химических реакций;

Участие в процессе теплорегуляции благодаря способности к медленному нагреванию и медленному остыванию.

Составьте схему цепей питания наземной экосистемы, компонентами которой являются: растения, ястреб, кузнечики, ящерицы. Укажите, какой компонент данной цепи наиболее часто встречается в других цепях питания.

Растения – кузнечики – ящерицы – ястреб.

Наиболее часто встречаются растения – продуценты в этой цепи.

Билет 5

1. №1. Белки, их роль в организме

Состав молекул белков. Белки- органические вещества, в состав молекул которых входят углерод, водород, кислород и азот, а иногда - сера и другие химические элементы.

2. Строение белков. Белки - макромолекулы, состоящие из десятков, сотен аминокислот. Разнообразие аминокислот (около 20 видов), входящих в состав белков.

3. Видовая специфичность белков - различие белков, входящих в состав организмов, относящихся к разным видам, определяемое числом аминокислот, их разнообразием, последовательностью соединения в молекулах белка. Специфичность белков у разных организмов одного вида - причина отторжения органов и тканей (тканевой несовместимости) при их пересадке от одного человека другому.

4. Структура белков - сложная конфигурация молекул белков в пространстве, поддерживаемая разнообразными химическими связями - ионными, водородными, ковалентными. Естественное со-

стояние белка. Денатурация - нарушение структуры молекул белков под влиянием различных факторов - нагревания, облучения, действия химических веществ. Примеры денатурации: изменение свойств белка при варке яиц, переход белка из жидкого состояния в твердое при построении пауком паутины.

5. Роль белков в организме:

Каталитическая. Белки - катализаторы, увеличивающие скорость химических реакций в клетках организма. Ферменты - биологические катализаторы;

Структурная. Белки - элементы плазматической мембраны, а также хрящей, костей, перьев, ногтей, волос, всех тканей и органов;

Энергетическая. Способность молекул белков к окислению с освобождением необходимой для жизнедеятельности организма энергии;

Сократительная. Актин и миозин - белки, входящие в состав мышечных волокон и обеспечивающие их сокращение вследствие способности молекул этих белков к денатурации;

Двигательная. Передвижение ряда одноклеточных организмов, а также сперматозоидов при помощи ресничек и жгутиков, в состав которых входят белки;

Транспортная. Например, гемоглобин - белок, входящий в состав эритроцитов и обеспечивающий перенос кислорода и углекислого газа;

Запасающая. Накопление белков в организме в качестве запасных питательных веществ, например в яйце, молоке, семенах растений;

Защитная. Антитела, фибриноген, тромбин - белки, участвующие в выработке иммунитета и свертывании крови;

Регуляторная. Гормоны - вещества, обеспечивающие наряду с нервной системой гуморальную регуляцию функций организма. Роль гормона инсулина в регуляции содержания сахара в крови.

№2. Биологическое значение размножения организмов. Способы размножения

1. Размножение и его значение. Размножение - воспроизведение себе подобных организмов, что обеспечивает существование видов в течение многих тысячелетий, способствует увеличению численности особей вида, преемственности жизни. Бесполое, половое и вегетативное размножение организмов.

2. Бесполое размножение - наиболее древний способ. В бесполом участвует один организм, в то время как в половом чаще всего участвуют две особи. У растений бесполое размножение с помощью споры - одной специализированной клетки. Размножение спорами водорослей, мхов, хвощей, плаунов, папоротников. Высыпание спор из растений, прорастание их и развитие из них новых дочерних организмов в благоприятных условиях. Гибель огромного числа спор, попадающих в неблагоприятные условия. Невысокая вероятность появления новых организмов из спор, поскольку они содержат мало питательных веществ и проросток поглощает их в основном из окружающей среды.

3. Вегетативное размножение - размножение растений с помощью вегетативных органов: надземного или подземного побега, части корня, листа, клубня, луковицы. Участие в вегетативном размножении одного организма или его части. Сходство дочернего растения с материнским, так как оно продолжает развитие материнского организма. Большая эффективность и распространение вегетативного размножения в природе, так как дочерний организм формируется быстрее из части материнского, чем из споры. Примеры вегетативного размножения: с помощью корневищ - ландыш, мята, пырей и др.; укоренением нижних, касающихся почвы ветвей (отводками) - смородина, дикий виноград; усами - земляника; луковицами - тюльпан, нарцисс, крокус. Использование вегетативного размножения при выращивании культурных растений: клубнями размножают картофель, луковицами -лук и чеснок, отводками - смородину и крыжовник, корневыми отпрысками - вишню, сливу, черенками - плодовые деревья.

4. Половое размножение. Сущность полового размножения в формировании половых клеток (га мет), слиянии мужской половой клетки (сперматозоида) и женской (яйцеклетки) - оплодотворении и развитии нового дочернего организма из оплодотворенной яйцеклетки. Благодаря оплодотворению получение дочернего организма с более разнообразным набором хромосом, значит, с более разнообразными наследственными признаками, вследствие чего он может оказаться более приспособленным к среде обитания. Наличие полового размножения у водорослей, мхов, папоротников, голосеменных и покрытосеменных. Усложнение полового процесса у растений в процессе их эволюции, появление наиболее сложной формы у семенных растений.

5. Семенное размножение происходит с помощью семян, оно характерно для голосеменных и покрытосеменных растений (у покрытосеменных широко распространено и вегетативное размножение). Последовательность этапов семенного размножения: опыление - перенос пыльцы на рыльце пестика, ее прорастание, появление путем деления двух спермиев, их продвижение в семязачаток, затем слияние одного спермия с яйцеклеткой, а другого - со вторичным ядром (у покрытосеменных). Формирование из семязачатка семени - зародыша с запасом питательных веществ, а из стенок завязи - плода. Семя - зачаток нового растения, в благоприятных условиях оно прорастает и первое время проросток питается за счет питательных веществ семени, а затем его корни начинают поглощать воду и минеральные вещества из почвы, а листья - углекислый газ из воздуха на солнечном свету. Самостоятельная жизнь нового растения.

№3.

Приготовить к работе два микроскопа, положить на предметные столики микропрепараты указанных тканей, осветить поле зрения микроскопов, перемещением тубуса винтами добиться четкого изображения. Рассмотреть микропрепараты, сравнить их и указать следующие различия: клетки эпителиальной ткани располагаются плотно, прилегая друг к другу, а в соединительной ткани - рыхло. Межклеточного вещества в эпителиальной ткани мало, а в соединительной много.

Рассмотрите под микроскопом микропрепараты эпителиальной и соединительной тканей, выявите их различия.

На двух микроскопах рассмотреть два образца микропрепаратов. Эпителиальная ткань клетки располагаются плотно, прилегая, друг к другу, а соединительная ткань рыхло. Межклеточного вещества в эпителиальной ткани мало, а в соединительной много.

Билет № 6

№1. Углеводы и жиры, их роль в организме.

1. Органические вещества клетки: углеводы, жиры, белки, нуклеиновые кислоты, АТФ. Макромолекулы - крупные и сложные по строению молекулы органических соединений, состоящие из более простых молекул - «кирпичиков».
2. Углеводы - органические соединения, состоящие из углерода, водорода и кислорода.

3. Строение углеводов. Простые углеводы - глюкоза, фруктоза. Наличие глюкозы в составе фруктов, овощей, крови человека, фруктозы - в составе фруктов и меда. Сложные углеводы - макромолекулы, состоящие из остатков молекул простых углеводов. Примеры сложных углеводов: целлюлоза (клетчатка), крахмал, гликоген - животный крахмал, образующийся в печени. Образование молекул целлюлозы, крахмала и гликогена из остатков молекул глюкозы. Наличие в одной молекуле крахмала от нескольких сотен до нескольких тысяч остатков молекул глюкозы, а в составе молекулы целлюлозы - свыше 10000 звеньев. Прочность и нерастворимость молекул сложных углеводов.

4. Роль углеводов в организме:

Запасающая - способность сложных углеводов накапливаться, образуя запас питательных веществ. Примеры: накопление крахмала в клетках клубней картофеля, корневищ многих растений; образование из молекул глюкозы и накопление в клетках печени гликогена;

Энергетическая - способность молекул углеводов окисляться до углекислого газа и воды с освобождением 17,6 кДж энергии при окислении 1 г углеводов;

Структурная. Углеводы - составная часть различных частей и органоидов клетки. Пример: наличие клеточной оболочки, состоящей из целлюлозы и играющей роль наружного скелета у растений.

5. Жиры - органические вещества. Гидрофобность (нерастворимость в воде) - главное свойство жиров.

Энергетическая - способность окисляться до углекислого газа и воды с освобождением энергии (38,9 кДж энергии при окислении 1 г жиров);

Структурная. Жиры входят в состав плазматической мембраны;

Запасающая - способность жиров накапливаться в подкожной жировой клетчатке у животных, в семенах некоторых растений (подсолнечник, кукуруза и др.);

Терморегуляционная: защита организма от охлаждения у ряда животных - тюленей, моржей, китов, медведей и др.;

Защитная: у ряда животных защита организма от механических повреждений, предохранение от смачивания водой перьев или волосяного покрова

№2.Иммунитет. Борьба с инфекционными заболеваниями. Профилактика ВИЧ-инфекции и заболевания СПИДом.
1. Кожа, слизистые оболочки, выделяемые ими жидкости (слюна, слезы, желудочный сок и др.) - первый барьер в защите организма от микробов. Их функции: служат механической преградой, защитным барьером, предупреждающим попадание микробов в организм; вырабатывают вещества, обладающие противомикробными свойствами.
2. Роль фагоцитов в защите организма от микробов. Проникновение фагоцитов - особой группы лейкоцитов - через стенки капилляров к местам скопления микробов, ядов, чужеродных белков, попавших в организм, обволакивание и переваривание их.
3. Иммунитет. Выработка лейкоцитами антител, которые разносятся кровью по организму, соединяются с бактериями и делают их беззащитными против фагоцитов. Контакт некоторых видов лейкоцитов с болезнетворными бактериями, вирусами, выделение лейкоцитами веществ, которые вызывают их гибель. Наличие в крови этих защитных веществ обеспечивает иммунитет - невосприимчивость организма к инфекционным заболеваниям. Действие разных антител на микробы.
4. Предупреждение инфекционных заболеваний. Введение в организм человека (как правило, в детском возрасте) ослабленных или убитых возбудителей наиболее распространенных инфекционных заболеваний - кори, коклюша, дифтерии, полиомиелита и др. - для предупреждения заболевания. Невосприимчивость человека к этим заболеваниям или протекание болезни в легкой форме благодаря выработке в организме антител. При заражении человека инфекционной болезнью введение ему сыворотки крови, полученной от переболевших людей или животных. Содержание в сыворотке антител против той или иной болезни. 5. Профилактика ВИЧ-инфекции и заболевания СПИДом. СПИД - инфекционное заболевание, для которого характерен дефицит иммунитета. ВИЧ - вирус иммунодефицита человека, вызывающий потерю иммунитета, что делает человека беззащитным перед инфекционным заболеванием. Заражение происходит половым путем, а также при переливании крови, содержащей ВИЧ, использование плохо стерилизованных шприцев, при родах (заражение ребенка от матери - носительницы возбудителя СПИДа). В связи с отсутствием эффективного лечения важна профилактика заражения вирусом СПИДа: жесткий контроль донорской крови и кровепрепаратов, использование одноразовых шприцев, исключение беспорядочных половых связей, применение презервативов, ранняя диагностика заболевания.
№3. Составьте схемы пи щевых цепей аквариума, в котором обитают: карась, улитки (прудовик и катушка), растения (элодея и валлиснерия), инфузория-туфелька, сапрофитные бактерии. Объясните, что произойдет в аквариуме, если из него удалить моллюсков.

Аквариум - модель экосистемы, ограниченное водное пространство. Три группы организмов, обитающих в аквариуме: производители органических веществ (водоросли и высшие водные растения); потребители органических веществ (рыбы, одноклеточные животные, моллюски); разрушители органических веществ (бактерии, грибы, разлагающие органические остатки до минеральных веществ).

Пищевые цепи аквариума:

сапрофитные бактерии --» инфузория-туфелька --» карась;

сапрофитные бактерии --» моллюски;

растения --» рыбы;

органические остатки --» моллюски.

Моллюски очищают стенки аквариума и поверхность растений от различных органических остатков. Исключение моллюсков из пищевой цепи приводит к помутнению воды в результате массового размножения бактерий, а также выделения рыбами продуктов обмена и непереваренных остатков пищи.

Билет №7

№1. Ядро, его строение и роль в передаче наследственной информации .

1. Ядро - главная часть клетки. Наличие ядра в клетках эукариот. Одноядерные и многоядерные клетки.
2. Эукариоты - организмы, имеющие в клетках ядро, отграниченное от цитоплазмы ядерной мембраной (грибы, растения, животные).
3. Строение ядра: ядерная оболочка, состоящая из двух мембран и имеющая поры; ядерный сок; ядрышки; хромосомы. Роль ядерной мембраны в отграничении содержимого ядра от цитоплазмы. Связь внутреннего содержимого ядра и цитоплазмы посредством пор. Ядрышки - «мастерские» по сборке рибосом.

4. Хромосомы - структуры, находящиеся в ядре и состоящие из одной молекулы ДНК и соединенных с ней молекул белков.
5. Набор хромосом в клетках. Соматические клетки - все клетки многоклеточного организма, кроме половых. Диплоидный (двойной) набор хромосом в соматических клетках большинства организмов (2п). Гаплоидный (одинарный) набор хромосом в половых клетках (In). Набор хромосом в соматических (2п = 46) и половых (In = 23) клетках человека. Гомологичные - хромосомы, имеющие одинаковую форму, размеры и определяющие проявление одинаковых признаков (окраску цветков, или форму плодов, или рост организма и др.). Негомологичные - хромосомы, относящиеся к разным парам, различающимся по форме, размерам, и отвечающие за проявление разных признаков (например, окраску и форму семян у гороха). Число, размеры и форма хромосом - главный признак вида. Изменение числа, формы или размера хромосом - причина мутаций.
6. Строение хромосомы. Хроматиды - две одинаковые нитевидные структуры, состоящие из молекулы ДНК и связанных с ней молекул белков, образующие одну хромосому и соединяющиеся между собой в области первичной перетяжки - центромеры.
7. Гены - единицы наследственности - участки хромосом, определяющие проявление определенных признаков у организма, например рост, массу тела, окраску шерсти у животных или расцветку цветков у растений и др. Ген - участок молекулы ДНК, содержащий информацию об одной белковой цепи. Содержание в одной молекуле ДНК большого числа (до нескольких тысяч) генов.

8. Роль ядра: участие в делении клетки, хранение и передача наследственных признаков организма, регуляция процессов жизнедеятельности в клетке.

Транспорт веществ:

Перенос веществ через биол. мембраны сопряжен с такими важнейшими биологическими явлениями, как внутриклеточный гомеостаз ионов, биоэлектрические потенциалы, возбуждение и проведение нервного импульса, запасание и трансформация энергии.

Различают несколько видов транспорта:

1 . Юнипорт – этотранспорт вещества через мембрану независимо от наличия и переноса других соединений.

2. Контранспорт – это перенос одного вещества сопряженного с транспортом другого: симпорт и антипорт

а) причем однонаправленный перенос называется симпортом – всасывание аминокислот через мембрану тонкого кишечника,

б) противоположно направленный - антипортом (натрий – калиевый насос).

Транспорт веществ может быть - пассивный и активный транспорт (перенос)

Пассивный транспорт не связан с затратами энергии, он осуществляется путем диффузии (направленного движения) по концентрационным (из maс в сторону min), электрическим или гидростатическим градиентам. Вода перемещается по градиенту водного потенциала. Осмос - это перемещение воды через полупроницаемую мембрану.

Активный транспорт осуществляется против градиентов (из min в сторону maс), связан с затратой энергии (преимущественно энергии гидролиза АТФ) и сопряжен с работой специализированных мембранных белков переносчиков (АТФ - синтетазы).

Пассивный перенос может осуществляться:

а. Путем простой диффузии через липидный бислои мембраны, а также через специализированные образования - каналы. Путем диффузии через мембрану проникают в клетку:

    незаряженные молекулы , хорошо растворимые в липидах, в т.ч. многие яды и лекарственные средства,

    газы - кислород и углекислый газ.

    ионы – они поступают через пронизывающие каналы мембраны, представляющие собой липопротеиновые структуры, Они служат для переноса определенных ионов (например, катионов – Na, K, Ca, анионов Cl, P,) и могут находиться в открытом или закрытом состоянии. Проводимость канала зависит от мембранного потенциала, что играет важную роль в механизме генерации и проведения нервного импульса.

б. Облегчённой диффузии . В ряде случаев перенос вещества совпадает с направлением градиента, но существенно превосходит по скорости простую диффузию. Этот процесс называют облегченной диффузией; он происходит с участием белков-переносчиков. Процесс облегченной диффузии не нуждается в энергии. Этим способом транспортируются сахара, аминокислоты, азотистые основания. Такой процесс происходит, например, при всасывании сахаров из просвета кишечника клетками эпителия.

в. Осмоса – перемещения растворителя через мембрану

Активный транспорт

Перенос молекул и ионов против электрохимического градиента (активный транспорт) связан со значительными затратами энергии. Часто градиенты достигают больших величин, например, концентрационный градиент водородных ионов на плазматической мембране клеток слизистой оболочки желудка составляет 106, градиент концентрации ионов кальция на мембране саркоплазматического ретикулума - 104, при этом потоки ионов против градиента значительны. В результате затраты энергии на транспортные процессы достигают, например, у человека, более 1/3 всей энергии метаболизма.

В плазматических мембранах клеток различных органов обнаружены системы активного транспорта ионов например:

    натрия и калия - натриевый насос. Эта система перекачивает натрий из клетки и калий в клетку (антипорт) против их электрохимических градиентов. Перенос ионов осуществляется основным компонентом натриевого насоса - Na+, К+-зависимой АТФ-азой за счет гидролиза АТФ. На каждую гидролизующуюся молекулу АТФ транспортируется три иона натрия и два иона калия .

    Существуют два типа Са 2 +-АТФ-аз. Одна из них обеспечивает выброс ионов кальция из клетки в межклеточную среду, другая - аккумуляцию кальция из клеточного содержимого во внутриклеточное депо. Обе системы способны создавать значительный градиент иона кальция.

    К+, Н+-АТФ-аза обнаружена в слизистой оболочке желудка и кишечника. Она способна транспортировать Н+ через мембрану везикул слизистой оболочки при гидролизе АТФ.

    В микросомах слизистой оболочки желудка лягушки найдена аниончувствительная АТФ-аза, способная при гидролизе АТФ осуществлять антипорт бикарбоната и хлорида.

    Протонный насос в митохондриях и пластидах

    секреция HCI в желудке,

    поглощение ионов клетками корней растений

Нарушение транспортных функций мембран, в частности увеличение проницаемости мембран, - общеизвестный универсальный признак повреждения клетки. Нарушением транспортных функций (например, у человека) обусловлено более 20 так называемых транспортных болезней, среди которых:

    почечная гликозурия,

    цистинурия,

    нарушение всасывания глюкозы, галактозы и витамина В12,

    наследственный сфероцитоз (гемолитическая анемия, эритроциты имеют форму шара, при этом уменьшается поверхность мембраны, падает содержание липидов, увеличивается проницаемость мембраны для натрия. Сфероциты удаляются из кровяного русла быстрее, чем нормальные эритроциты).

В особую группу активного транспорта выделяют перенос веществ (крупных частиц) путем - и эндо- и экзоцитоза .

Эндоцитоз (от греч. эндо - внутри) поступление веществ в клетку, включает фагоцитоз и пиноцитоз.

Фагоцитоз (от греч. Phagos - пожирающий) – процесс захватывания твёрдых частиц, инородных живых объектов(бактерий, фрагменты клеток) одноклеточными организмами или клетками многоклеточных, последние называются фагоцитами , или клетками-пожирателями. Фагоцитоз открыт И. И. Мечниковым. Обычно при фагоцитозе клетка образует выпя­чивания, цитоплазмы - псевдоподии, которые обтекают захватываемые частицы.

Но о6разование псевдоподий не обязательно.

Фагоцитоз играет важную роль в питании одноклеточных и низших мно­гоклеточных животных, которым свойственно внутриклеточное пищева­рение, а также характерен для клеток, играющих важную роль в явлениях иммунитета и метаморфоза. Такая форма поглощения свойственна клеткам соединительной ткани – фагоцитам, выполняющим защитную функцию, активно фагоцитируют клетки плаценты, клетки выстилающие полость тела, пигментный эпителий глаз.

В процессе фагоцитоза можно выделить четыре последовательные фазы. В первой (факультативной) фазе фагоцит сближается с объектом погло­щения. Здесь существенное значение имеет положительная реакция фагоцита на химическое раздражение хемотаксис. Во второй фазе наблюдается адсорбция поглощаемой частицы на поверхности фаго­цита. В третьей фазе плазматическая мембрана в виде мешочка обвола­кивает частицу, края мешочка смыкаются и отрываются от остальной мембраны, а образовавшаяся вакуоль оказывается внутри клетки. В чет­вертой фазе заглоченные объекты разрушаются и перевариваются внутри фагоцита. Разумеется, эти стадии не отграничены, а незаметно переходят одна в другую.

Клетки могут аналогичным способом поглощать также жидкости и крупномолекулярные соединения. Это явление получило название п и н о ц и т о з а (греч. рупо - пить и суtоз - клетка). Пиноцитоз сопровожда­ется энергичным движением цитоплазмы в поверхностном слое, приводящим к образованию впячивания клеточной мембраны, идущей от поверхности в виде канальца внутрь клетки. На конце канальца образуются вакуоли, которые отрываются и переходят в цитоплазму. Пиноцитоз наиболее акти­вен в клетках с интенсивным обменом веществ, в частности в клетках лимфа­тической системы, злокачественных опухолей.

Путем пиноцитоза в клетки проникают высокомолекулярные соедине­ния: питательные вещества из кровяного русла, гормоны, ферменты и дру­гие вещества, в том числе лекарственные. Электронно-микроскопические исследования показали, что путем пиноцитоза происходит всасывание жира эпителиальными клетками кишечника, фагоцитируют клетки почечных канальцев и растущие ооциты.

Инородные тела, попавшие в клетку путем фагоцитоза или пиноцитоза, подвергаются воздействию лизирующих ферментов внутри пищеваритель­ных вакуолей либо непосредственно в цитоплазме. Внутриклеточными ре­зервуарами этих ферментов являются лизосомы.

Функции эндоцитоза

    Осуществляются, питание (яй­цеклетки поглощают таким способом желточные белки: фагосомами являются пищеварительные вакуоли простейших)

    Защитные и иммунные реакции (лейкоциты поглощают чужеродные частицы и иммуноглобули­ны)

    Транспорт (почечные канальцы всасывают бел­ки из первичной мочи).

    Избирательный эндоцитоз определен­ных веществ (желточных белков, иммуноглобулинов и т. п.) происходит при контакте этих веществ с субстрат-специфически­ми рецепторными участками на плазматической мембране.

Материалы, попадающие в клетку путем эндоцитоза, рас­щепляются («перевариваются»), накапливаются (напри­мер, желточные белки) или снова выводятся с противоположной стороны клетки путем экзоцитоза («цитопемпсис»).

Экзоцитоз (от греч. экзо – вне, снаружи)- процесс, противоположный эндоцитозу: например, из эндоплазматического ретикулума, аппарата Гольджи, различные эндоцитозные пузырьки, лизосомы сливаются с плазматической мембраной, освобождая своё содержимоё наружу.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!