Про ванную комнату - Потолок. Ванные. Кафель. Оборудование. Ремонт. Сантехника

Значение состава газов альвеолярного воздуха. Внутреннее дыхание и транспорт газов. Смотреть что такое "альвеолярный воздух" в других словарях

Атмосферный воздух , который вдыхает человек, находясь вне помещения (или в хорошо вентилируемых помещениях), содержит 20,94% кислорода, 0,03% углекислого газа, 79,03% азота. В закрытых помещениях, заполненных людьми, процентное содержание углекислого газа в воздухе может быть несколько выше.

Выдыхаемый воздух содержит в среднем 16,3% кислорода, 4% углекислого газа, 79,7% азота (эти цифры приведены в перерасчете на сухой воздух, т. е. за вычетом паров воды, которыми всегда насыщен выдыхаемый воздух).

Состав выдыхаемого воздуха весьма непостоянен; он зависит от интенсивности обмена веществ организма и от объема легочной вентиляции. Стоит сделать несколько глубоких дыхательных движений или, напротив, задержать дыхание, чтобы состав выдыхаемого воздуха изменился.

Азот в газообмене не участвует, однако процентное содержание азота в видимом воздухе на несколько десятых долей процента выше, чем во вдыхаемом. Дело в том, что объем выдыхаемого воздуха несколько меньше, чем объем вдыхаемого, а потому то же самое количество азота, распределяясь в меньшем объеме, дает больший процент. Меньший объем выдыхаемого воздуха по сравнению с объемом вдыхаемого объясняется тем, что углекислого газа выделяется несколько меньше, чем поглощается кислорода (часть поглощаемого кислорода используется в организме на обращение соединений, которые выделяются из организма с мочой и потом).

Альвеолярный воздух отличается от выдыхаемого большим процентом некислоты и меньшим процентом кислорода. В среднем состав альвеолярного воздуха таков: кислорода 14,2-14,0%, углекислого газа 5,5- 5,7%, азота около 80%.

Определение состава альвеолярного воздуха важно для понимания механизма газообмена в легких. Холден предложил простой метод для определения состава альвеолярного воздуха. После нормального вдоха исследуемый делает возможно более глубокий выдох через трубку длиной 1-1,2 м и диаметром 25 мм. Первые порции выдыхаемого воздуха,уходящие через трубку, содержат воздух вредного пространства; последние же порции, остающиеся в трубке, содержат альвеолярный воздух. Для анализа в газоприемник берут воздуха из той части трубки, которая находится ближе всего ко рту.

Состав альвеолярного воздуха несколько различается в зависимости от того, произведён ли забор пробы воздуха для анализа на высоте вдоха или выдоха. Если сделать быстрый, короткий и неполный выдох в конце нормального вдоха, то проба воздуха отразит состав альвеолярного воздуха после наполнения легких дыхательным воздухом, т. е. во время вдоха. Если же сделать глубокий выдох после нормального выдоха, то проба отразит состав альвеолярного воздуха во время выдоха. Понятно, что в первом случае процент углекислого газа будет несколько меньше, а процент кислорода несколько больше, чем во втором. Это видно из результатов опытов Холдена, который установил, что процент углекислого газа в альвеолярном воздухе в конце вдоха составляет в среднем 5,54, а в конце выдоха - 5,72.

Таким оораэом, имеется сравнительно небольшое различие в содержании углекислого газа в альвеолярном воздухе на вдохе и на выдохе: всего на 0,2-0,3%. Это в большой степени объясняется тем, что при нормальном дыхании, как сказано выше, ется всего, обновляется всего 1/7 объема воздуха в легочных альвеолах. Относительное постоянство состава альвеолярного воздуха имеет большое физиологическое значение, что выяснено ниже.

Легочной вентиляцией называют объем воздуха, вдыхаемого за единицу времени (обычно используют минутный объем дыхания).

Таким образом, вентиляция - это произведение дыхательного объема на частоту дыхательных циклов. Однако в легочном газообмене участвует не весь вентилируемый воздух, а лишь та его часть, которая достигает альвеол.

Дело в том, что примерно 1/3 дыхательного объема покоя приходится на вентиляцию так называемого мертвого пространства, заполненного воздухом, который непосредственно не участвует в газообмене и лишь перемещается в просвете воздухоносных путей при вдохе и выдохе (рис. 10.17). Следовательно, вентиляция альвеолярных пространств - альвеолярная вентиляция - представляет собой легочную вентиляцию за вычетом вентиляции мертвого пространства. Именно альвеолярная вентиляция обеспечивает обмен газов в легких.

количествовоздуха , которое остается в легких после максимального выдоха, называется остаточнымобъемом , его величина равна примерно 1200 мл.

Функциональная остаточная ёмкость (ФОЕ) - объём воздуха в лёгких и дыхательных путях после спокойного выдоха.

Функциональная остаточная емкость включает остаточный объем и резервный объем выдоха (FRC - = RV + ERV); ее можно также рассматривать как разность между общей емкостью легких.

частота дыхания человека
Обычно человек делает около 16 вдохов в минуту, получая 8 л воздуха. В зависимости от того, спит человек или бодрствует, находится в состоянии относительного покоя или физической активности, у него происходит изменение частоты и глубины дыхания. Во время сна частота дыхания - 12 вдохов в минуту, при усиленной работе мышц она возрастает в два и более раза.
При максимальном произвольном усилении дыхания частота вдохов и выдохов может возрасти до 50-60 в минуту, объем потребляемого воздуха - до 2 л на один вдох, соответственно, за минуту-до 100-200 л.

Спирометрия (спирография) - доступный и очень информативный метод диагностики заболеваний органов дыхания.

Данный метод позволяет оценивать функциональное состояние легких и бронхов, в частности жизненную ёмкость легких, проходимость дыхательных путей, выявлять обструкцию (спазм бронхов) и степень выраженности патологических изменений.

С помощью компьютерной спирометрии можно:

· точно выявить скрытый спазм бронхов - основной симптом легочных заболеваний - бронхиальной астмы и хронического обструктивного бронхита

· провести точную дифференциальную диагностику между этими заболеваниями

· оценить степень тяжести болезни

· подобрать оптимальную тактику лечения и определить эффективность проводимой терапии в динамике

Показания к проведению спирографии:

· длительный и затяжной беспричинный кашель (в течение 3-4 недель и более, часто после перенесенных ОРВИ и острого бронхита)

· возникает одышка, ощущение «заложенности» в грудной клетке

· возникает «сипящее» и «свистящее» дыхание преимущественно при выдохе

· возникает ощущение затрудненного выдоха и вдоха

5. «Мертвое» пространство, его объем и физиологическое значение. Распределение дыхательного объема между «мертвым» пространством и легочными альвеолами. Степень обновления альвеолярного воздуха. Зависимость альвеолярной вентиляции от глубины и частоты дыхания.

Мертвое пространство - часть дыхательного тракта, в котором газ не участвует в обмене.

Объем мертвого пространства составляет около 150 мл.

6. Состав вдыхаемого, выдыхаемого и альвеолярного воздуха. Относительное постоянство газового состава альвеолярного воздуха, его причины. Обмен газов в легких, факторы, способствующие газообмену (поверхность контакта, градиент напряжения дыхательных газов, диффузионная способность легких). Значение соотношения между альвеолярной вентиляцией и кровотоком в легочных капиллярах (перфузией капилляров). Функциональное «мертвое» пространство.

При спокойном дыхании человек вдыхает и выдыхает около 500 мл воздуха. Этот объем воздуха называется дыхательным объемом. После спокойного вдоха человек может еще максимально вдохнуть некоторое количество воздуха - это резервный объем вдоха, он равен 2500-3000 мл. После спокойного выдоха можно еще максимально выдохнуть некоторое количество воздуха - это резервный объем выдоха, он равен 1300-1500 мл.

Вдыхаемый воздух содержит 20,93% кислорода и 0,03% углекислого газа, выдыхаемый воздух - кислорода 16%, углекислого газа 4,5% и в альвеолярном воздухе содержится 14% кислорода и 5,5% углекислого газа. В выдыхаемом воздухе углекислого газа содержится меньше, чем в альвеолярном. Это связано с тем, что к выдыхаемому воздуху примешивается воздух мертвого пространства с низким содержанием углекислого газа и его концентрация уменьшается.

При выдохе альвеолярный воздух смешивается с воздухом мертвого пространства, состав которого соответствует атмосферному. Поэтому в выдыхаемом воздухе 16% кислорода, 4,5% углекислого газа и 79,4% азота. Дыхательные газы обмениваются в легких через альвеолокапиллярную мембрану. Это область контакта альвеолярного эпителия и эндотелия капилляров. Переход газов через мембрану происходит по законам диффузии. Скорость диффузии прямо пропорциональна разнице парциального давления газов. Согласно закону Дальтона, парциальное давление каждого газа в их смеси, прямо пропорционально его содержанию в ней.

По методу Бора определяется объем тех отделов легких, в которых не происходит удаление СО 2 из крови, поскольку этот показатель связан с работой органа, он называется функциональным (физиологическим) мертвым пространством. У здоровых лиц эти объемы практически одинаковы. Однако у больных с поражениями легких второй показатель может значительно превышать первый в связи с неравномерностью кровотока и вентиляции в разных отделах легких.

7. Транспорт кислорода кровью. Кривая диссоциации оксигемоглобина, ее анализ. Факторы, влияющие на диссоциацию оксигемоглобина в тканях. Значение напряжения углекислого газа (эффект Бора). Содержание и напряжение кислорода в артериальной и венозной крови. Кислородная емкость крови и коэффициент утилизации кислорода в покое и нагрузке.

Транспорт кислорода кровью

Кислород переносится кровью в двух формах. Большая часть связывается с гемоглобином (рисунок 2b), но также имеется очень небольшая доля кислорода, растворенного в плазме. Каждый грамм гемоглобина при полном насыщении способен переносить 1,31 мл кислорода. Таким образом, каждый литр крови с концентрацией гемоглобина 15 г/дл (150 г/л – пер.) может переносить около 200 мл кислорода при полном насыщении (РО 2 >100 мм Hg). При этом РО 2 всего 3 мл кислорода растворится в каждом литре плазмы.

Если РаО 2 значительно повышено (при дыхании 100% кислородом), небольшое количество кислорода растворится в плазме (0,003 мл О 2 /100 мл крови/мм Hg РО 2), но при этом гемоглобин при сатурации > 95% не способен продолжать связываться с кислородом. При рассмотрении адекватности доставки кислорода тканям следует иметь в виду три фактора: концентрация гемоглобина, сердечный выброс и оксигенация.

Нормальная кривая диссоциации оксигемоглобина представлена. В исходной ее точке, когда РаО2 гемоглобин не содержит кислорода и SaО2 также равняется нулю. По мере по­вышения Ра02 гемоглобин начинает быстро насыщаться кисло­родом, превращаясь в оксигемоглобин: небольшого увеличения напряжения кислорода оказывается достаточно для существен­ного прироста содержания НЬО2. При 40 мм рт. ст. содержание НЬО2 достигает уже 75 %. Затем наклон кривой становится все более и более пологим. На этом участке кривой гемоглобин уже менее охотно присоединяет к себе кислород, и для насыщения оставшихся 25 % НЬ требуется поднять Ра02 с 40 до 150 мм рт. ст. Впрочем, в естественных условиях гемоглобин артериальной Крови никогда не насыщается кислородом полностью, потому чТО при дыхании атмосферным воздухом Ра02 не превышает 100 мм рт. ст.

8. Транспорт углекислого газа кровью. Процессы, протекающие в капиллярах тканей и легких. Значение карбоангидразы. Факторы, увеличивающие способность крови связывать углекислый газ (эффект Холдейна). Содержание и напряжение углекислого газа в венозной и артериальной крови.

Транспорт углекислого газа кровью. Большая часть углекислого газа переносится кровью в химически связанном состоянии. Из 60 объемных процентов углекислого газа только 3 объемных процента растворено в плазме крови. Процессы связывания и отдачи углекислого газа сложны и многообразны. Большая роль в связывании углекислого газа принадлежит белкам крови, в частности гемоглобину. Следовательно, гемоглобин не только является переносчиком кислорода, но и участвует в транспорте углекислого газа. Значительная часть его переносится в виде особых соединений бикарбонатов (натриевые и калиевые соли угольной кислоты). Часть углекислого газа транспортируется в виде Н2СО3.

Карбоангидраза

угольная ангидраза, карбонат-гидролиаза, фермент класса лиаз, катализирует обратимую реакцию гидратации двуокиси углерода. Обнаружена у животных, человека, растений, бактерий. Содержит в качестве кофактора атом Zn. Мол. м. 28 000-30 000. Регулятор кислотно-щелочного равновесия в тканях и биол. жидкостях; играет важную роль в физиол. процессах при необходимости быстрого связывания или освобождения СО2, напр. при дыхании (К. эритроцитов обеспечивает связывание СО2 кровью в тканях и освобождение СО2 в лёгких или жабрах), при подкислении мочи в почках, секреции кислого желудочного сока, образовании бикарбонатов в соке поджелудочной железы, СаСО3 скорлупы яиц в яйцеводах птиц и др.

Эффект Холдейна можно объяснить следующим образом. Присоединение кислорода в легких к гемоглобину превращает гемоглобин в более сильную кислоту, что вытесняет двуокись углерода из крови в альвеолы двумя способами: (1) более кислый гемоглобин имеет меньшую тенденцию связываться с двуокисью углерода и образовывать карбаминогемоглобин, в результате из крови вытесняется большая часть находившейся там в карбаминовых формах двуокиси углерода; (2) повышение кислотности гемоглобина приводит к высвобождению излишка ионов водорода, которые связываются с ионами бикарбоната, образуя угольную кислоту; последняя диссоциирует, образуя воду и двуокись углерода, затем двуокись углерода переходит из крови в альвеолы и далее - в атмосферу.

В венозной крови содержится 50 - 58 об%двуокиси углерода , причем наибольшая ее часть содержится в плазме. Напряжение углекислого газа вартериальной крови , поступающей в тканевые капилляры, составляет 40 мм рт. ст.

9. Газообмен между кровью и тканями. Напряжение кислорода и углекислого газа в тканях. Факторы, способствующие диффузии газов (градиент напряжения, площадь обменной поверхности, диффузионноное расстояние).

Перенос O 2 и СO 2 между кровью системных капилляров и клетками тканей осуществляется путем простой диффузии, т. е. так же, как между кровью легочных капилляров и альвеолярным воздухом. Скорость переноса газа через слой ткани прямо пропорциональна площади слоя и разнице парциального давления газа по обе его стороны и обратно пропорциональна толщине слоя.

При газообмене между тканями и кровью толщина диффузионного барьера менее 0,5 мкм, однако в мышцах в состоянии покоя расстояние между открытыми капиллярами составляет около 50 мкм.

При работе, когда потребление кислорода мышцами увеличивается, открываются добавочные капилляры, что уменьшает диффузионное расстояние и увеличивает диффузионную поверхность. Поскольку СO 2 диффундирует в тканях примерно в 20 раз быстрее, чем O 2 , удаление углекислого газа происходит гораздо легче, чем снабжение кислородом.

диффузионные коэффициенты другихгазов , необходимых для дыхания, составляют: углекислый газ -- 20,3; окись углерода -- 0,81; азот --0,53...

10. Дыхательный центр, его расположение. Инспираторные и экспираторные

нейроны. Автоматия бульбарного отдела дыхательного центра. Реципрокные

взаимоотношения между инспираторным и экспираторным отделами. Роль варолиева моста и коры головного мозга.

Выделяют следующие части дыхательного центра.
1. Высшие отделы, расположенные вышествола головного мозга, организуют взаимодействиенижележащих частей дыхательного центра, управляют произвольным дыханием и организуютвзаимодействие системы дыхания с другими системами.
2. Пневмотаксический центр переднего моста (сапнейстическим центром) организует взаимодействие двух других структур

следующего, нижнего уровня.
3. Медуллярные инспираторный иэкспираторный центры (центры вдоха и выдоха), в соответствии с названием, посредством пейсмекерной ритмическойактивности обеспечивают чередование вдоха и выдоха. Это происходит путем организации взаимодействия элементовнижележащего уровня (иерархии структур) дыхательного центра. См. статью функциональные группы дыхательных нейронов ствола головного мозга.
4. Мотонейроны спинного мозга, аксоны которых образуют нервы, идущие к дыхательным мышцам. Сами по себе мотонейроны не обладают способностью к осуществлению целостных актов дыхания. Дыхание возможно только при наличии связей совокупности мотонейронов спинного мозга, по крайней мере, с инспираторным и экспираторным центрами продолговатого мозга. При нарушении связей с отделами, расположенными выше продолговатого мозга, ухудшаются приспособительные возможности дыхания. Причем, чем выше локализация нарушения, тем более тонкиеадаптационные возможности дыхания утрачиваются.

Инспираторные нейроны - те нервные клетки, которые возбуждаются за 0,01 - 0,02с до возникновения активного вздоха. В этих нейронах во время вздоха увеличивается частота импульсов, а затем импульсация мгновенно прекращается.

Виды инспираторных нейронов:

По способности регулировать активность других нейронов:

  1. инспираторные - тормозные - JL;
  2. инспираторные - облегчающие - JB.

JL при своем возбуждении тормозят активность инспираторных нейронов и прекращают вздох. JB - наоборот.

По времени возбуждения:

  1. ранние - за несколько сотых секунды до вздоха;
  2. поздние - в процессе вздоха.

По связям с экспираторными нейронами:

  1. инспираторно-эскпираторные - обеспечивают связь в ДЦ;
  2. инспираторные нейроны - значительная часть нейронов ретикулярной формации
  3. продолговатого мозга.

Экспираторные нейроны - возбуждение возникает за несколько сотых секунд до возникновения активного выдоха.

Виды нейронов:

  1. экспираторные - ранние и поздние;
  2. экспираторно -инспираторные нейроны.

Они расположены в ретикулярной формации продолговатого мозга: 5 % - в дорсальном ядре, 50 % - в вентральном ядре.

Таким образом, в продолговатом мозге инспираторных нейронов больше, чем экспираторных. При возбуждении этого отдела ЦНС возникает активный вдох. Инспираторные и экспираторные нейроны находятся в реципрокных взаимоотношениях, что обеспечивает координированность вдоха и выдоха, их смене друг другом.

Инспираторные и экспираторные нейроны обладают выраженной способностью к автоматии. Автоматией обладают комплексы 4-х нейронов ДЦ с обязательным наличием тормозных нейронов. Автоматия поддерживается импульсами от различных рецепторов.

Инспираторные и экспираторные нейроны тесно связаны с другими ядрами продолговатого мозга. Например, при возбуждении ДЦ тормозится центр глотания, возбуждаются сосудодвигательный центр и центр регуляции сердечной деятельности.

Варолиев мост (от имени Констанзо Варолия), или мост - отдел головного мозга, является вместе с мозжечком частью заднего мозга. Принадлежит стволу мозга, рострален к продолговатому мозгу (medulla oblognata), каудален к среднему мозгу и вентрален к мозжечку.

11. Саморегуляция дыхания. Значение механорецепторов легких (рефлекс Геринга-Брейера).

Геринга - Брёйера рефлексы , дыхательные рефлексы, возникающие во время вдоха и выдоха; существенное звено саморегуляции дыхания. Описаны немецими физиологами Э. Герингом и И. Брёйером (J. Breuer) в 1868. Во время вдоха происходит растяжение лёгких, которое вызывает раздражение механорецепторов (чувствительных к механическим раздражениям нервных окончаний), расположенных в альвеолах, а также в межрёберных мышцах и диафрагме. От механорецепторов нервные импульсы по блуждающему нерву поступают в дыхательный центр продолговатого мозга и приводят к возбуждению нейронов, вызывающих расслабление мышц и выдох. Чем сильнее растяжение лёгких, тем больше поступает в дыхательный центр импульсов, ведущих к прекращению вдоха и возникновению выдоха. Прекращение этих импульсов вновь стимулирует вдох.

12. Роль периферических и сосудистых хеморецепторов в регуляции дыхания, влияние изменения напряжения в крови кислорода и углекислого газа (гипоксия, гиперкапния).

периферические сосудистые хеморецепторы расположены в артериальной части системы кровообращения.

Периферические хеморецепторы находятся в каротидных тельцах, расположенных в области бифуркации общих сонных артерий, и в аортальных тельцах, залегающих на верхней и нижней поверхностях дуги аорты. У человека наибольшую роль играют каротидные тельца. В них содержатся две или несколько разновидностей гломерулярных клеток, интенсивно флюоресцирующих при специальной обработке благодаря содержанию допамина.

Периферические хеморецепторы реагируют на снижение Р O2 и рН и на увеличение Р CO2 артериальной крови. По сравнению с другими клетками организма они обладают уникальной способностью «чувствовать» изменения Р O2 в артериальной крови, начиная примерно с 500 мм рт. ст.

Гипокси́я (др.-греч. ὑπό - под, внизу и лат. oxygenium - кислород) - состояние кислородного голодания как всего организма в целом, так и отдельных органов и тканей, вызванное различными факторами: задержкой дыхания, болезненными состояниями, малым содержанием кислорода в атмосфере. Вследствие гипоксии в жизненно важных органах развиваются необратимые изменения. Наиболее чувствительными к кислородной недостаточности являются центральная нервная система, мышца сердца, ткани почек, печени. Может вызывать появление необъяснимого чувства эйфории, приводит к головокружениям, низкому мышечному тонусу.

Гиперкапни́я (др.-греч. ὑπερ- - чрезмерно; καπνός - дым) - состояние, вызванное избыточным количеством CO 2 в крови; отравлениеуглекислым газом. Является частным случаем гипоксии.

Гиперкапния может возникнуть в следующих случаях:

§ При пользовании неисправных дыхательных аппаратов замкнутого цикла (ребризеров)

§ В плохо вентилируемых барокамерах, где содержат группу людей.

§ При забивке баллонов акваланга

§ При использовании компрессора с плохими фильтрами в душном непроветриваемом помещении.

13. Регуляция дыхания. Влияние головного мозга (двигательных центров),

лимбической системы, механорецепторов скелетных мышц, неспецифических факторов (боли, изменения температуры, гормонов и др.).

В соответствии с метаболическими потребностями дыхательная система обеспечивает газообмен О2 и СО2 между окружающей средой и организмом.

Активирующие влияния служат физиологической основой возникновения мотивационного возбуждения головного мозга . Высшим центром регуляции вегетативных функций являетсялимбическая система , иногда называемая висцеральным мозгом .

Нисходящие регулирующие влияния головного мозга на скелетные мышцы осуществляются через сегментные механизмы спинного мозга.

ПИЩЕВАРЕНИЕ.

1. Основные функции пищеварительного аппарата. Виды пищеварения.

АЛЬВЕОЛЯРНЫЙ ВОЗДУХ - воздух, остающийся в легочных альвеолах после нормального спокойного выдыхания и служащий непосредственно для газообмена с кровью, проникающей по капиллярам легочной артерии. Объем, слагаясь из резервного воздуха и остаточного воздуха, равняется в среднем 2.700-3.000 л.

Состав альвеоляр­ного воздуха существенно отличается от состава вдыхаемого и вы­дыхаемого из легких человека воздуха (табл. 8.1).

Если дыхательный объем увеличивается в несколько раз, напри­мер, при мышечной работе он достигает порядка 2500 мл, то объем анатомического мертвого пространства практически не влияет на эффективность альвеолярной вентиляции.

Газы, входящие в состав атмосферного, альвеолярного и выды­хаемого воздуха, имеют определенное парциальное (partialis - ча­стичный) давление, т. е. давление, приходящееся на долю данного газа в смеси газов. Общее давление газа обусловлено кинетическим движением молекул, воздействующих на поверхность раздела сред. В легких такой поверхностью являются воздухоносные пути и аль­веолы. Согласно закону Дальтона, парциальное давление газа в какой-либо смеси прямо пропорционально его объемному содержа­нию. Альвеолярный воздух представлен смесью в основном О2, СО2 и N2. Кроме того, в альвеолярном воздухе содержатся водяные пары, которые также оказывают определенное парциальное давле­ние, поэтому при общем давлении смеси газов 760,0 мм рт.ст. парциальное давление 02(Ро2) в альвеолярном воздухе составляет около 104,0 мм рт.ст., СО2(Рсо2) - 40,0 мм рт.ст. N2(PN2) - 569,0 мм рт.ст. Парциальное давление водяных паров при темпе­ратуре 37 °С составляет 47 мм рт.ст.

Необходимо учитывать, что приведенные в табл. 8.1 значения парциального давления газов соответствуют их давлению на уровне моря (Р - 760 мм рт.ст.) и эти значения будут уменьшаться с подъемом на высоту.

Для поддержания определенного состава альвеолярного воздуха важна величина альвеолярной вентиляции и ее отношение к уровню метаболизма, т. е. количеству потребляемого О2 и выделяемого СО2. При любом переходном состоянии (например, начало работы и др.) необходимо время для становления оптимального состава альвео­лярного воздуха. Главное значение имеют оптимальные отношения альвеолярной вентиляции к кровотоку.



Состав альвеолярного воздуха измеряют во рту во вторую по­ловину фазы выдоха с помощью быстродействующих анализаторов. В физиологической практике используются масс-спектрометр, ко­торый позволяет определять количество любого дыхательного газа; инфракрасный анализатор СО2 и анализатор О2. Анализаторы не­прерывно регистрируют концентрацию газов в выдыхаемом воздухе.

3.Легочные объемы и емкости. Методы определения. Минутный объем дыхания и легочной вентиляции в покое и при физической нагрузке.

Легочные объемы подразделяют на статические и динамические. Статические легочные объемы измеряют при завершенных дыха­тельных движениях без лимитирования их скорости. Динамические легочные объемы измеряют при проведении дыхательных движений с ограничением времени на их выполнение.

Легочные объемы. Объем воздуха в легких и дыхательных путях зависит от следующих показателей: 1) антропометрических инди­видуальных характеристик человека и дыхательной системы; 2) свойств легочной ткани; 3) поверхностного натяжения альвеол; 4) силы, развиваемой дыхательными мышцами.

Дыхательный объем (ДО) - объем воздуха, который вды­хает и выдыхает человек во время спокойного дыхания. У взрослого человека ДО составляет примерно 500 мл. Величина ДО зависит от условий измерения (покой, нагрузка, положение тела). ДО рас­считывают как среднюю величину после измерения примерно шести спокойных дыхательных движений.

Резервный объем вдоха (РОвд) - максимальный объем воздуха, который способен вдохнуть испытуемый после спокойного вдоха. Величина РОвд составляет 1,5-1,8 л.

Резервный объем выдоха (РОвыд) - максимальный объем воздуха, который человек дополнительно может выдохнуть с уровня спокойного выдоха. Величина РОвыд ниже в горизонтальном поло­жении, чем в вертикальном, уменьшается при ожирении. Она равна в среднем 1,0-1,4 л.



Остаточный объем (ОО) - объем воздуха, который остается в легких после максимального выдоха. Величина остаточного объема равна 1,0-1,5 л.

Исследование динамических легочных объемов представляет на­учный и клинический интерес и их, описание выходит за рамки курса нормальной физиологии.

Легочные емкости . Жизненная емкость легких (ЖЕЛ) включает в себя дыхательный объем, резервный объем вдоха, ре­зервный объем выдоха. У мужчин среднего возраста ЖЕЛ варьирует в пределах 3,5-5,0 л и более. Для женщин типичны более низкие величины (3,0-4,0 л). В Зависимости от методики измерения ЖЕЛ различают ЖЕЛ вдоха, когда после полного выдоха производится максимально глубокий вдох и ЖЕЛ выдоха, когда после полного вдоха производится максимальный выдох.

Емкость вдоха (Евд) равна сумме дыхательного объема и резервного объема вдоха. У человека Евд составляет в среднем 2,0-2,3 л.

Функциональная остаточная емкость (ФОЕ) - объ­ем воздуха в легких после спокойного выдоха. ФОЕ является суммой резервного объема выдоха и остаточного объема. ФОЕ измеряется методами газовой дилюции, или разведения газов, и плетизмографически. На величину ФОЕ существенно влияет уровень физической активности человека и положение тела: ФОЕ меньше в горизон­тальном положении тела, чем в положении сидя или стоя. ФОЕ уменьшается при ожирении вследствие уменьшения общей растя­жимости грудной клетки.

Общая емкость легких (ОЕЛ) - объем воздуха в легких по окончании полного вдоха. ОЕЛ рассчитывают двумя способами: ОЕЛ - ОО + ЖЕЛ или ОЕЛ - ФОЕ + Евд. ОЕЛ может быть измерена с помощью плетизмографии или методом газовой дилюции.

Измерение легочных объемов и емкостей имеет клиническое значение при исследовании функции легких у здоровых лиц и при диагностике заболевания легких человека. Измерение легочных объемов и емкостей обычно производят методами спирометрии, пневмотахометрии с интеграцией показателей и бодиплетизмографии. Статические легочные объемы могут снижаться при патологических состояниях, приводящих к ограничению расправления легких. К ним относятся нейромышечные заболевания, болезни грудной клетки, живота, поражения плевры, повышающие жесткость легочной ткани, и заболевания, вызывающие уменьшение числа функционирующих альвеол (ателектаз, резекция, рубцовые изменения легких).

Минутный объем дыхания (МОД) - это общее количе­ство воздуха, которое проходит через легкие за 1 мин. У человека в покое МОД составляет в среднем 8 л*мин-1. МОД можно рас­считать, умножив частоту дыхания в минуту на величину дыха­тельного объема.

Максимальная вентиляция легких - объем возду­ха, который проходит через легкие за 1 мин во время максимальных по частоте и глубине дыхательных движений. Максимальная вен­тиляция вызывается произвольно, возникает во время работы, при недостатке содержания О2 (гипоксия), а также при избытке содер­жания СО2 (гиперкапния) во вдыхаемом воздухе.

При максимальной произвольной вентиляции легких частота дыхания может возрастать до 50-60 в 1 мин, а ДО - до 2-4 л. В этих условиях МОД может доходить до 100-200 л*мин-1.

Максимальную произвольную вентиляцию измеряют во время форсированного дыхания, как правило, в течение 15 с. В норме у человека при физической нагрузке уровень максимальной вентиля­ции всегда ниже, чем максимальная произвольная вентиляция.

4.Газообмен в легких. Процентное содержание и парциальное давление кислорода и углекислого газа в альвеолярном воздухе. Напряжение газов в артериальной и венозной крови.

Газообмен в легких. В легких кислород из альвеолярного воздуха переходит в кровь, а углекислый газ из крови поступает в легкие.

Движение газов обеспечивает диффузия. Согласно законам диффузии газ распространяется из среды с высоким парциальным давлением в среду с меньшим давлением. Парциальное давление – это часть общего давления, которая приходится на долю данного газа в газовой смеси. Чем выше процентное содержание газа в смеси, тем выше его парциальное давление. Для газов, растворенных в жидкости, употребляют термин «напряжение», соответствующий термину «парциальное давление», применяемому для свободных газов.

В легких газообмен совершается между воздухом, содержащимся в альвеолах, и кровью. Альвеолы оплетены густой сетью капилляров. Стенки альвеол и стенки капилляров очень тонкие. Для осуществления газообмена определяющими условиями являются площадь поверхности, через которую осуществляется диффузия газов, и разности парциального давления (напряжения) диффундирующих газов. Легкие идеально соответствуют этим требованиям: при глубоком вдохе альвеолы растягиваются и их поверхность достигает 100–150 кв. м (не менее велика и поверхность капилляров в легких), существует достаточная разница парциального давления газов альвеолярного воздуха и напряжения этих газов в венозной крови.

Связывание кислорода кровью. В крови кислород соединяется с гемоглобином, образуя нестабильное соединение – оксигемоглобин, 1 г которого способен связать 1,34 куб. см кислорода. Количество образующегося оксигемоглобина прямо пропорционально парциальному давлению кислорода. В альвеолярном воздухе парциальное давление кислорода равняется 100–110 мм рт. ст. При этих условиях 97 % гемоглобина крови связывается с кислородом.

В виде оксигемоглобина кислород от легких переносится кровью к тканям. Здесь парциальное давление кислорода низкое, и оксигемоглобин диссоциирует, высвобождая кислород, что обеспечивает снабжение тканей кислородом.

Наличие в воздухе или тканях углекислого газа уменьшает способность гемоглобина связывать кислород.

Связывание углекислого газа кровью. Углекислый газ переносится кровью в химических соединениях гидрокарбоната натрия и гидрокарбоната калия. Часть его транспортируется гемоглобином.

В капиллярах тканей, где напряжение углекислого газа высокое, происходит образование угольной кислоты и карбоксигемоглобина. В легких карбоангидраза, содержащаяся в эритроцитах, способствует дегидратации, что приводит к вытеснению углекислого газа из крови.

Газы, входящие в состав атмосферного, альвеолярного и выды­хаемого воздуха, имеют определенное парциальное (partialis - ча­стичный) давление, т. е. давление, приходящееся на долю данного газа в смеси газов. Общее давление газа обусловлено кинетическим движением молекул, воздействующих на поверхность раздела сред. В легких такой поверхностью являются воздухоносные пути и аль­веолы. Согласно закону Дальтона, парциальное давление газа в какой-либо смеси прямо пропорционально его объемному содержа­нию. Альвеолярный воздух представлен смесью в основном О2, СО2 и N2. Кроме того, в альвеолярном воздухе содержатся водяные пары, которые также оказывают определенное парциальное давле­ние, поэтому при общем давлении смеси газов 760,0 мм рт.ст. парциальное давление 02(Ро2) в альвеолярном воздухе составляет около 104,0 мм рт.ст., СО2(Рсо2) - 40,0 мм рт.ст.

Напряжение газов в артериальной и венозной крови. Диффузия газов через альвеолярную мембрану происходит между альвеолярным воздухом и венозной, а также артериальной кровью легочных капилляров.

Газовый состав

Атмосферный

Альвеолярный

Выдыхаемый

Содержание и парциальное давление (напряжение) кислорода и углекислого газа в различных средах

Кислород

Углекислый газ

мм рт. ст.

мм рт. ст.

Вдыхаемый воздух

Выдыхаемый воздух

Альвеолярный воздух

Артериальная кровь

Венозная кровь

Тканевая жидкость

Цитоплазма

Как видим, газовый состав альвеолярного воздуха существенно отличается от атмосферного (21% кислорода и 0.03% углекислого газа). В альвеолярном воздухе содержится 14 % кислорода и 5.5% углекислого газа. Постоянство внутренней газовой среды организма на фоне перехода кислорода в кровь, а углекислого газа в альвеолярный воздух поддерживается с помощью вентиляции легких, которая обеспечивает необходимое обновление альвеолярного воздуха и при выполнении физической работы, и при эмоциональном возбуждении, когда количество используемого кислорода многократно возрастает. Таким образом, с помощью внешнего дыхания решается очень сложная задача: обеспечить и постоянство внутренней газовой среды, и ее необходимое обновление для обеспечения тканей организма кислородом в соответствии с потребностью.

Диффузия газов через аэрогематический барьер

В организме газообмен кислорода и углекислого газа, а так же других газообразных продуктов происходит с помощью диффузии .

Диффузия газов через альвеолокапиллярную мембрану легких осуществляется в два этапа. На первом этапе диффузионный перенос газов происходит по концентрационному градиенту через тонкий аэрогематический барьер (его толщина равна около 1мкм). На втором этапе происходит связывание газов в крови легочных капилляров.

Диффузия газов осуществляется в соответствии с градиентом парциальных давлений газов и описывается законом Фика:

Q газа = S DK (P1-P2) /T

Где Q газа - объем газа, проходящий через ткань в единицу времени, S- площадь ткани, DK- диффузионный коэффициент газа, P1-P2 - градиент парциального давления газа, Т - толщина барьера ткани.

Рисунок 8. Строение аэрогематического барьера

1-сурфактант, 2-эпителий альвеол, 3-интерстициальное пространство, 4-эндотелий капилляров,5-плазма крови, 6-эритроцит

Как видно из приведенной формулы. Диффузия газа зависит от градиента давлений этого газа по обе стороны барьера, следовательно, нас интересуют парциальные давления кислорода и углекислого газа в альвеолярном воздухе и напряжения этих газов в венозной крови. Все эти цифры представлены в таблице 2. Отметим лишь, что в альвеолярном воздухе часть общего давления (47 мм рт.ст.) приходится на пары воды, значит давление «сухого» воздуха = 760 – 47 = 713 мм рт.ст. Альвеолярный воздух обогащен углекислым газом, кислорода в нем не 21, а 14%, следовательно парциальное давление кислорода в нем составит 14 % от 713 = 100 мм рт.ст. В венозной крови легочных капилляров напряжение кислорода = 40 мм рт.ст. Градиент давлений, обеспечивающий диффузию кислорода равен 100 – 40 = 60 мм рт.ст.

Что касается диффузии СО 2 из венозной крови в альвеолы, то даже сравнительно небольшого градиента РСО 2 (6-10мм.рт.ст.) для этого оказывается вполне достаточно, поскольку растворимость углекислого газа в 20-25 раз больше, чем кислорода. Именно поэтому после прохождения венозной крови через легочные капилляры РСО 2 в ней оказывается почти равным альвеолярному (около 40 мм.рт. ст.).

Для кислорода Р1- Р2 = 60 мм рт.ст

Для углекислого газа Р1- Р2 = 6 мм рт.ст

Ещё раз необходимо подчеркнуть, что постоянная скорость диффузии, как кислорода, так и углекислого газа через аэрогематический барьер определяются достаточно стабильным составом альвеолярного газа во время вдоха и выдоха.

Капилляры легких

Функции газообмена в легких и насыщение крови кислородом осуществляется с участием сосудов малого круга кровообращения. Стенки ветвей легочной артерии тоньше, чем стенки такого же калибра артерий большого круга кровообращения. Сосудистая система легких очень податлива и способна легко растягиваться. В систему легочной артерии поступает сравнительно большой объем крови (6 литров/мин) из правого желудочка, а давление в малом круге низкое - 15-20 мм рт. ст., потому, что сосудистое сопротивление примерно в 10 раз меньше, чем в сосудах большого круга кровообращения. Сеть альвеолярных капилляров не сравнима с организацией капиллярного русла других органов. Отличительными чертами капиллярного русла легких являются 1) малая величина капиллярных сегментов, 2) их обильная взаимосвязь, что формирует петлистую сеть, 3) высокая плотность отдельных капиллярных сегментов на единицу площади альвеолярной поверхности, 4) низкая скорость кровотока. Капиллярная сеть в стенках альвеол настолько плотная, что некоторые физиологи рассматривают ее как сплошной слой движущейся крови. Площадь поверхности капиллярной сети близка площади поверхности альвеол (80 м 2), в ней содержится около 200 мл крови. Диаметр альвеолярных кровеносных капилляров колеблется в пределах 8.3 - 9.9 мкм, а диаметр эритроцитов - 7.4 мкм. Таким образом, эритроциты плотно прилегают к стенкам капилляров. Эти особенности кровоснабжения легких создают условия для быстрого и эффективного газообмена, в результате которого происходит уравновешивание газового состава альвеолярного воздуха и артериальной крови. Взгляните еще раз на таблицу 2 и отметьте, что напряжение кислорода в артериальной крови становится равным 100, а углекислого газа – 40 мм рт. ст.

воздух, заполняющий альвеолы легких и непосредственно участвующий в газообмене с кровью.


Смотреть значение Альвеоля́рный Во́здух в других словарях

Воздух — атмосфера
дух
Словарь синонимов

Воздух — см. воздыхать.
Толковый словарь Даля

Воздух — воздуха, мн. воздухи, м. (церк.). Покрывало для чаши, употр. в христианском культе.
Толковый словарь Ушакова

Воздух — О температуре, влажности.
Влажный, горячий, дождевой, жгучий, знойный, каленый, колкий, колючий, ледяной, морозный, нагретый, накаленный, парной, промозглый (разг.),........
Словарь эпитетов

Альвеолярный Прил. — 1. Соотносящийся по знач. с сущ.: альвеола, связанный с ним. 2. Содержащийся в альвеолах (2).
Толковый словарь Ефремовой

Атмосферный Воздух — - жизненно важный
компонент окружающей природной среды, представляющий собой естественную смесь газов атмосферы, находящуюся за пределами жилых, производственных и иных помещений.
Экономический словарь


Экономический словарь

— -
норматив, который устанавливается для каждого источника шумового, вибрационного, электромагнитного и других физических воздействий на
атмосферный воздух........
Экономический словарь

— -
норматив физического воздействия на
атмосферный воздух, который отражает предельно допустимый максимальный
уровень физического воздействия на атмосферный........
Экономический словарь

Атмосферный Воздух — - жизненно важный компонент окружающей природной среды, представляющий собой естественную смесь газов атмосферы, находящуюся за пределами жилых, производственных и иных помещений.
Юридический словарь

Вредное Физическое Воздействие На Атмосферный Воздух — - вредное воздействие шума, вибрации, ионизирующего излучения, температурного и других физических факторов, изменяющих температурные, энергетические, волновые, радиационные........
Юридический словарь

Альвеолярный — (alveolaris; лат. alveolus лунка, ячейка) относящийся к альвеолам (легких, зубов).
Большой медицинский словарь

Альвеолярный Воздух — воздух, заполняющий альвеолы легких и непосредственно участвующий в газообмене с кровью.
Большой медицинский словарь

Альвеолярный Край — (margo alveolaris, JNA) см. Альвеолярная дуга.
Большой медицинский словарь

Альвеолярный Мешочек — (sacculus alveolaris, PNA, BNA, JNA, LNH) структурный компонент легочного ацинуса, представляющий собой слепое окончание альвеолярного хода; стенки А. м. образованы многочисленными альвеолами.
Большой медицинский словарь

Альвеолярный Отросток — (processus alveolaris, PNA, BNA, JNA) дугообразно изогнутый костный гребень, являющийся продолжением тела верхней челюсти книзу; на нижнем крае А. о. находятся 8 альвеол зубов.
Большой медицинский словарь

Альвеолярный Ход — (ductus alveolaris, PNA, BNA, JNA) структурный компонент легочного ацинуса, представляющий собой продолжение дыхательной бронхиолы и переходящий в альвеолярные мешочки.
Большой медицинский словарь

Предельно Допустимый Норматив Вредного Физического Воздействия На Атмосферный Воздух — - норматив, который устанавливается для каждого источника шумового, вибрационного, электромагнитного и других физических воздействий на атмосферный воздух и при котором........
Юридический словарь

Предельно Допустимый Уровень Физического Воздействия На Атмосферный Воздух — - норматив физического воздействия на атмосферный воздух, который отражает предельно допустимый максимальный уровень физического воздействия на атмосферный воздух,........
Юридический словарь

Воздух Атмосферный — смесь газов, образующая атмосферу Земли и содержащая (в объемных процентах) азота - 78,09, кислорода - 20,95, инертных газов - 0,93, углекислого газа - 0,03.
Большой медицинский словарь

Воздух Приземный — слой атмосферного воздуха, располагающийся в непосредственной близости от поверхности Земли, отличающийся непостоянством состава примесей природного происхождения........
Большой медицинский словарь

Воздух — , смесь газов, окружающая поверхность Земли. см. АТМОСФЕРА.

Дополнительный Воздух — (устар.) см. Резервный объем вдоха.
Большой медицинский словарь

Дыхательный Воздух — (устар.) см. Дыхательный объем.
Большой медицинский словарь

Сжатый Воздух — , воздух, который содержится под давлением, намного превосходящим атмосферное. Это достигается путем накачивания воздуха насосом или КОМПРЕССОРОМ в резервуар. широко........
Научно-технический энциклопедический словарь

Концевой Отдел Альвеолярный — (р. t. alveolaris, LNH) пузыревидно или гроздевидно расширенный К. о.
Большой медицинский словарь

Воздух — смесь газов, из которых состоит атмосфера Земли: азот (78,09% пообъему), кислород (20,95%), благородные газы (0,94%), углекислый газ(0,03%); суммарная масса ок. 5,2.1015 т. Плотность 1,2928........
Большой энциклопедический словарь

Микролитиаз Альвеолярный — (microlithiasis alveolaris)-Микролитиаз легочный альвеолярный.
Большой медицинский словарь

Микролитиаз Легочный Альвеолярный — (microlithiasis alveolaris pulmonum; син. микролитиаз альвеолярный) врожденная болезнь неясной этиологии, характеризующаяся диффузным отложением в обоих легких, особенно в их нижних........
Большой медицинский словарь

Млечный Альвеолярный Проточек — (ductulus alveolaris lactifer, LNH; син. млечный ход) небольшой проток, посредством которого альвеола молочной железы открывается в млечный проток.
Большой медицинский словарь



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!