O kúpeľni - Strop. Kúpeľne. Dlaždica. Vybavenie. Oprava. Inštalatérstvo

Ako nájsť derivát s komplexnou mocninou. Riešenie derivácií pre figuríny: definícia, ako nájsť, príklady riešení. Zložitejšie príklady

Po predbežnej delostreleckej príprave budú príklady s 3-4-5 hniezdeniami funkcií menej desivé. Nasledujúce dva príklady sa niekomu môžu zdať komplikované, ale ak ich pochopíte (niekto bude trpieť), tak takmer všetko ostatné v diferenciálnom počte vám bude pripadať ako detský vtip.

Príklad 2

Nájdite deriváciu funkcie

Ako už bolo uvedené, pri hľadaní derivátu komplexná funkcia, v prvom rade je to potrebné Správny POCHOPTE svoje investície. V prípadoch, keď existujú pochybnosti, pripomínam vám užitočnú techniku: vezmeme napríklad experimentálnu hodnotu „x“ a pokúsime sa (mentálne alebo v koncepte) nahradiť túto hodnotu do „strašného výrazu“.

1) Najprv musíme vypočítať výraz, čo znamená, že súčet je najhlbšie vloženie.

2) Potom musíte vypočítať logaritmus:

4) Potom položte kosínus na kocku:

5) V piatom kroku rozdiel:

6) A nakoniec najvzdialenejšia funkcia je druhá odmocnina:

Vzorec na diferenciáciu komplexnej funkcie sa aplikujú v opačnom poradí, od vonkajšej funkcie po najvnútornejšiu. Rozhodujeme sa:

Vyzerá to bez chýb:

1) Vezmite deriváciu druhej odmocniny.

2) Vezmite deriváciu rozdielu pomocou pravidla

3) Derivácia trojky je nula. V druhom člene vezmeme deriváciu stupňa (kocku).

4) Vezmite deriváciu kosínusu.

6) A nakoniec vezmeme derivát najhlbšieho vloženia.

Môže sa to zdať príliš ťažké, ale toto nie je najbrutálnejší príklad. Vezmite si napríklad Kuznecovovu zbierku a oceníte všetku krásu a jednoduchosť analyzovaného derivátu. Všimol som si, že radi dávajú podobnú vec na skúške, aby si overili, či študent rozumie, ako nájsť deriváciu komplexnej funkcie, alebo nerozumie.

Nasledujúci príklad je na to, aby ste ho vyriešili sami.

Príklad 3

Nájdite deriváciu funkcie

Tip: Najprv použijeme pravidlá linearity a pravidlo diferenciácie produktu

Úplné riešenie a odpoveď na konci hodiny.

Je čas prejsť na niečo menšie a krajšie.
Nie je nezvyčajné, že príklad ukazuje súčin nie dvoch, ale troch funkcií. Ako nájsť deriváciu súčinu troch faktorov?

Príklad 4

Nájdite deriváciu funkcie

Najprv sa pozrieme, je možné premeniť súčin troch funkcií na súčin dvoch funkcií? Napríklad, ak by sme v súčine mali dva polynómy, mohli by sme otvoriť zátvorky. Ale v uvažovanom príklade sú všetky funkcie odlišné: stupeň, exponent a logaritmus.

V takýchto prípadoch je to nevyhnutné postupne uplatňovať pravidlo diferenciácie produktov dvakrát

Trik je v tom, že „y“ označujeme súčin dvoch funkcií: a „ve“ označujeme logaritmus: . Prečo sa to dá urobiť? Je to naozaj - to nie je súčin dvoch faktorov a pravidlo nefunguje?! Nie je nič zložité:


Teraz zostáva použiť pravidlo druhýkrát do zátvorky:

Môžete sa tiež skrútiť a dať niečo zo zátvoriek, ale v tomto prípade je lepšie nechať odpoveď presne v tejto forme - bude to jednoduchšie skontrolovať.

Uvažovaný príklad možno vyriešiť druhým spôsobom:

Obe riešenia sú absolútne ekvivalentné.

Príklad 5

Nájdite deriváciu funkcie

Toto je príklad nezávislého riešenia, vo vzorke sa rieši pomocou prvej metódy.

Pozrime sa na podobné príklady so zlomkami.

Príklad 6

Nájdite deriváciu funkcie

Môžete sem ísť niekoľkými spôsobmi:

Alebo takto:

Ale riešenie bude napísané kompaktnejšie, ak najprv použijeme pravidlo diferenciácie kvocientu , pričom pre celý čitateľ:

V zásade je príklad vyriešený a ak sa nechá tak, nebude to chyba. Ale ak máte čas, vždy je vhodné skontrolovať návrh, či sa dá odpoveď zjednodušiť?

Zredukujme vyjadrenie čitateľa na spoločného menovateľa a zbavme sa trojposchodovej štruktúry zlomku:

Nevýhodou dodatočných zjednodušení je, že existuje riziko, že sa pomýlite nie pri hľadaní derivátu, ale pri banálnych školských transformáciách. Na druhej strane učitelia často zadanie odmietnu a žiadajú, aby im „pripomenuli“ derivát.

Jednoduchší príklad, ktorý môžete vyriešiť sami:

Príklad 7

Nájdite deriváciu funkcie

Pokračujeme v ovládaní metód hľadania derivácie a teraz zvážime typický prípad, keď sa na diferenciáciu navrhuje „strašný“ logaritmus.

Ak g(X) A f(u) – diferencovateľné funkcie ich argumentov, resp X A u= g(X), potom je v bode diferencovateľná aj komplexná funkcia X a nachádza sa podľa vzorca

Typickou chybou pri riešení derivačných úloh je mechanické prenášanie pravidiel na diferenciáciu jednoduchých funkcií na funkcie zložité. Naučme sa tejto chybe vyhnúť.

Príklad 2 Nájdite deriváciu funkcie

Nesprávne riešenie: vypočítajte prirodzený logaritmus každého člena v zátvorkách a hľadajte súčet derivácií:

Správne riešenie: opäť určíme, kde je „jablko“ a kde „mleté ​​mäso“. Prirodzeným logaritmom výrazu v zátvorkách je tu „jablko“, teda funkcia nad stredným argumentom u, a výraz v zátvorkách je „mleté ​​mäso“, teda medziargument u nezávislou premennou X.

Potom (pomocou vzorca 14 z tabuľky derivátov)

V mnohých problémoch zo skutočného života môže byť výraz s logaritmom o niečo komplikovanejší, a preto existuje poučenie

Príklad 3 Nájdite deriváciu funkcie

Nesprávne riešenie:

Správne riešenie. IN Ešte raz Určujeme, kde je „jablko“ a kde je „mleté ​​mäso“. Tu je kosínus výrazu v zátvorkách (vzorec 7 v tabuľke derivátov) „jablko“, je pripravený v režime 1, ktorý ovplyvňuje iba neho, a výraz v zátvorkách (derivát stupňa je číslo 3 v tabuľke derivátov) je „mleté ​​mäso“, pripravuje sa v režime 2, ktorý sa týka iba neho. A ako vždy spájame dva deriváty so znakom produktu. výsledok:

Derivácia komplexnej logaritmickej funkcie je častou úlohou v testoch, preto dôrazne odporúčame, aby ste sa zúčastnili lekcie „Derivácia logaritmickej funkcie“.

Prvé príklady sa týkali komplexných funkcií, v ktorých bola medziľahlým argumentom nezávislej premennej jednoduchá funkcia. Ale v praktických úlohách je často potrebné nájsť deriváciu komplexnej funkcie, kde medziľahlý argument je buď sám o sebe zložitá funkcia, alebo takúto funkciu obsahuje. Čo robiť v takýchto prípadoch? Nájdite deriváty takýchto funkcií pomocou tabuliek a pravidiel diferenciácie. Keď sa nájde derivát stredného argumentu, jednoducho sa dosadí na správne miesto vo vzorci. Nižšie sú uvedené dva príklady, ako sa to robí.

Okrem toho je užitočné vedieť nasledujúce. Ak možno komplexnú funkciu znázorniť ako reťazec troch funkcií

potom by sa jeho derivát mal nájsť ako súčin derivátov každej z týchto funkcií:

Mnohé z vašich domácich úloh môžu vyžadovať, aby ste si otvorili sprievodcov v nových oknách. Akcie so silami a koreňmi A Operácie so zlomkami .

Príklad 4. Nájdite deriváciu funkcie

Aplikujeme pravidlo diferenciácie komplexnej funkcie, pričom nezabúdame, že vo výslednom súčine derivácií existuje medziargument vzhľadom na nezávislú premennú X sa nemení:

Pripravíme druhý faktor súčinu a použijeme pravidlo na rozlíšenie súčtu:

Druhým pojmom je koreň, takže

Zistili sme teda, že prostredný argument, ktorým je súčet, obsahuje komplexnú funkciu ako jeden z výrazov: povýšenie na moc je komplexná funkcia a to, čo sa zvýši na moc, je stredný argument vo vzťahu k nezávislému. premenlivý X.

Preto opäť aplikujeme pravidlo pre diferenciáciu komplexnej funkcie:

Stupeň prvého faktora transformujeme na odmocninu a pri diferenciácii druhého faktora nezabudnite, že derivácia konštanty sa rovná nule:

Teraz môžeme nájsť deriváciu stredného argumentu potrebného na výpočet derivácie komplexnej funkcie potrebnej v príkaze problému r:

Príklad 5. Nájdite deriváciu funkcie

Najprv použijeme pravidlo na rozlíšenie súčtu:

Získali sme súčet derivácií dvoch komplexných funkcií. Poďme nájsť prvý:

V tomto prípade je zvýšenie sínusu na mocninu komplexnou funkciou a samotný sínus je prechodným argumentom pre nezávislú premennú X. Preto použijeme pravidlo diferenciácie komplexnej funkcie vyňatie faktora zo zátvoriek :

Teraz nájdeme druhý člen derivácií funkcie r:

Tu je zvýšenie kosínusu na mocninu komplexnou funkciou f a samotný kosínus je prostredný argument v nezávislej premennej X. Použime opäť pravidlo na diferenciáciu komplexnej funkcie:

Výsledkom je požadovaný derivát:

Tabuľka derivácií niektorých zložitých funkcií

Pre komplexné funkcie na základe pravidla diferenciácie komplexnej funkcie má vzorec pre deriváciu jednoduchej funkcie inú formu.

1. Derivácia komplexnej mocninnej funkcie, kde u X
2. Derivácia koreňa výrazu
3. Derivácia exponenciálnej funkcie
4. Špeciálny prípad exponenciálnej funkcie
5. Derivácia logaritmickej funkcie s ľubovoľnou kladnou bázou A
6. Derivácia komplexnej logaritmickej funkcie, kde u– diferencovateľná funkcia argumentu X
7. Derivácia sínusu
8. Derivácia kosínusu
9. Derivácia dotyčnice
10. Derivácia kotangens
11. Derivácia arcsínusu
12. Derivácia oblúkového kosínusu
13. Derivácia arkustangens
14. Derivácia oblúkového kotangens

Funkcie komplexný typ nie vždy zodpovedajú definícii komplexnej funkcie. Ak existuje funkcia tvaru y = sin x - (2 - 3) · a r c t g x x 5 7 x 10 - 17 x 3 + x - 11, potom ju nemožno považovať za komplexnú, na rozdiel od y = sin 2 x.

Tento článok ukáže koncept komplexnej funkcie a jej identifikáciu. Pracujme so vzorcami na nájdenie derivácie s príkladmi riešení v závere. Použitie tabuľky derivátov a pravidiel diferenciácie výrazne skracuje čas na nájdenie derivátu.

Základné definície

Definícia 1

Komplexná funkcia je taká, ktorej argument je tiež funkciou.

Označuje sa takto: f (g (x)). Máme, že funkcia g (x) sa považuje za argument f (g (x)).

Definícia 2

Ak existuje funkcia f a je to kotangens funkcia, potom g(x) = ln x je funkcia prirodzeného logaritmu. Zistíme, že komplexnú funkciu f (g (x)) zapíšeme ako arctg (lnx). Alebo funkcia f, čo je funkcia umocnená na 4. mocninu, kde g (x) = x 2 + 2 x - 3 sa považuje za celú racionálnu funkciu, dostaneme, že f (g (x)) = (x 2 + 2 x - 3) 4.

Je zrejmé, že g(x) môže byť komplexný. Z príkladu y = sin 2 x + 1 x 3 - 5 je zrejmé, že hodnota g má odmocninu zlomku. Tento výraz možno označiť ako y = f (f 1 (f 2 (x))). Z toho, že f je sínusová funkcia a f 1 je funkcia nachádzajúca sa pod druhou odmocninou, f 2 (x) = 2 x + 1 x 3 - 5 je zlomková racionálna funkcia.

Definícia 3

Stupeň vnorenia je určený ľubovoľným prirodzeným číslom a zapisuje sa ako y = f (f 1 (f 2 (f 3 (. . . (f n (x))))) .

Definícia 4

Koncept zloženia funkcie sa týka počtu vnorených funkcií podľa podmienok problému. Na riešenie použite vzorec na nájdenie derivácie komplexnej funkcie tvaru

(f (g (x))) " = f " (g (x)) g " (x)

Príklady

Príklad 1

Nájdite deriváciu komplexnej funkcie v tvare y = (2 x + 1) 2.

Riešenie

Podmienka ukazuje, že f je kvadratická funkcia a g(x) = 2 x + 1 sa považuje za lineárnu funkciu.

Použime derivačný vzorec pre komplexnú funkciu a napíšme:

f" (g (x)) = ((g (x)) 2) " = 2 (g (x)) 2 - 1 = 2 g (x) = 2 (2 x + 1); g " (x) = (2 x + 1) " = (2 x) " + 1 " = 2 x " + 0 = 2 1 x 1 - 1 = 2 ⇒ (f (g (x))) " = f " (g (x)) g " (x) = 2 (2 x + 1) 2 = 8 x + 4

Je potrebné nájsť deriváciu so zjednodušeným pôvodným tvarom funkcie. Dostaneme:

y = (2 x + 1) 2 = 4 x 2 + 4 x + 1

Odtiaľ to máme

y " = (4 x 2 + 4 x + 1) " = (4 x 2) " + (4 x) " + 1 " = 4 (x 2) " + 4 (x) " + 0 = = 4 · 2 · x 2 - 1 + 4 · 1 · x 1 - 1 = 8 x + 4

Výsledky boli rovnaké.

Pri riešení problémov tohto typu je dôležité pochopiť, kde sa bude nachádzať funkcia tvaru f a g (x).

Príklad 2

Mali by ste nájsť deriváty komplexných funkcií v tvare y = sin 2 x a y = sin x 2.

Riešenie

Prvý zápis funkcie hovorí, že f je funkcia kvadratúry a g(x) je funkcia sínus. Potom to dostaneme

y " = (sin 2 x) " = 2 sin 2 - 1 x (sin x) " = 2 sin x cos x

Druhý záznam ukazuje, že f je sínusová funkcia a g(x) = x 2 označuje mocninovú funkciu. Z toho vyplýva, že súčin komplexnej funkcie píšeme ako

y " = (sin x 2) " = cos (x 2) (x 2) " = cos (x 2) 2 x 2 - 1 = 2 x cos (x 2)

Vzorec pre deriváciu y = f (f 1 (f 2 (f 3 (... (f n (x))))) sa zapíše ako y " = f " (f 1 (f 2 (f 3 (. .. ( f n (x))))) · f 1 " (f 2 (f 3 (... (f n (x)))) · · f 2 " (f 3 (... (f n (x)) )) )) · . . . fn "(x)

Príklad 3

Nájdite deriváciu funkcie y = sin (ln 3 a r c t g (2 x)).

Riešenie

Tento príklad ukazuje náročnosť zápisu a určovania umiestnenia funkcií. Potom y = f (f 1 (f 2 (f 3 (f 4 (x))))) označuje, kde f , f 1 , f 2 , f 3 , f 4 (x) je funkcia sínus, funkcia zvyšovania do 3 stupňov, funkcia s logaritmom a základom e, arkustangens a lineárna funkcia.

Zo vzorca na definovanie komplexnej funkcie to máme

y " = f " (f 1 (f 2 (f 3 (f 4 (x)))) f 1 " (f 2 (f 3 (f 4 (x)))) f 2 " (f 3 (f 4 (x)) f 3 " (f 4 (x)) f 4 " (x)

Dostaneme to, čo potrebujeme nájsť

  1. f " (f 1 (f 2 (f 3 (f 4 (x))))) ako derivácia sínusu podľa tabuľky derivácií, potom f " (f 1 (f 2 (f 3 (f 4 ( x)))) ) = cos (ln 3 a r c t g (2 x)) .
  2. f 1 " (f 2 (f 3 (f 4 (x)))) ako derivácia mocninovej funkcie, potom f 1 " (f 2 (f 3 (f 4 (x)))) = 3 ln 3 - 1 a r c t g (2 x) = 3 ln 2 a r c t g (2 x).
  3. f 2 " (f 3 (f 4 (x))) ako logaritmická derivácia, potom f 2 " (f 3 (f 4 (x))) = 1 a r c t g (2 x) .
  4. f 3" (f 4 (x)) ako derivácia arkustangens, potom f 3" (f 4 (x)) = 1 1 + (2 x) 2 = 1 1 + 4 x 2.
  5. Pri hľadaní derivácie f 4 (x) = 2 x odstráňte 2 zo znamienka derivácie pomocou vzorca pre deriváciu mocninnej funkcie s exponentom rovným 1, potom f 4 " (x) = (2 x) "= 2 x" = 2 · 1 · x 1 - 1 = 2.

Skombinujeme medzivýsledky a dostaneme to

y " = f " (f 1 (f 2 (f 3 (f 4 (x)))) f 1 " (f 2 (f 3 (f 4 (x)))) f 2 " (f 3 (f 4 (x)) f 3 " (f 4 (x)) f 4 " (x) = = cos (ln 3 a r c t g (2 x)) 3 ln 2 a r c t g (2 x) 1 a r c t g (2 x) 1 1 + 4 x 2 2 = = 6 cos (ln 3 a r c t g (2 x)) ln 2 a r c t g (2 x) a r c t g (2 x) (1 + 4 x 2)

Analýza takýchto funkcií pripomína hniezdiace bábiky. Diferenciačné pravidlá nemožno vždy použiť explicitne pomocou derivačnej tabuľky. Často je potrebné použiť vzorec na nájdenie derivátov komplexných funkcií.

Existujú určité rozdiely medzi zložitým vzhľadom a zložitými funkciami. S jasnou schopnosťou rozlíšiť to bude hľadanie derivátov obzvlášť jednoduché.

Príklad 4

Je potrebné zvážiť uvedenie takéhoto príkladu. Ak existuje funkcia tvaru y = t g 2 x + 3 t g x + 1, potom ju možno považovať za komplexnú funkciu tvaru g (x) = t g x, f (g) = g 2 + 3 g + 1 . Je zrejmé, že pre komplexný derivát je potrebné použiť vzorec:

f " (g (x)) = (g 2 (x) + 3 g (x) + 1) " = (g 2 (x)) " + (3 g (x)) " + 1 " = = 2 · g2 - 1 (x) + 3 g" (x) + 0 = 2 g (x) + 3 1 g 1 - 1 (x) = = 2 g (x) + 3 = 2 t g x + 3; g " (x) = (t g x) " = 1 cos 2 x ⇒ y " = (f (g (x)) " = f " (g (x)) g " (x) = (2 t g x + 3 ) · 1 cos 2 x = 2 t g x + 3 cos 2 x

Funkcia tvaru y = t g x 2 + 3 t g x + 1 sa nepovažuje za komplexnú, pretože má súčet t g x 2, 3 t g x a 1. Avšak t g x 2 sa považuje za komplexnú funkciu, potom získame mocninnú funkciu v tvare g (x) = x 2 a f, čo je tangensová funkcia. Ak to chcete urobiť, rozlišujte podľa množstva. Chápeme to

y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + (3 t g x) " + 1 " = = (t g x 2) " + 3 (t g x) " + 0 = (t g x 2) " + 3 čo 2 x

Prejdime k hľadaniu derivácie komplexnej funkcie (t g x 2) ":

f " (g (x)) = (t g (g (x))" = 1 cos 2 g (x) = 1 cos 2 (x 2) g " (x) = (x 2) " = 2 x 2 - 1 = 2 x ⇒ (t g x 2) " = f " (g (x)) g " (x) = 2 x cos 2 (x 2)

Dostaneme, že y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + 3 cos 2 x = 2 x cos 2 (x 2) + 3 cos 2 x

Funkcie komplexného typu môžu byť zahrnuté do komplexných funkcií a samotné komplexné funkcie môžu byť zložkami funkcií komplexného typu.

Príklad 5

Uvažujme napríklad komplexnú funkciu v tvare y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x (x 2 + 1)

Táto funkcia môže byť reprezentovaná ako y = f (g (x)), kde hodnota f je funkciou logaritmu so základom 3 a g (x) sa považuje za súčet dvoch funkcií tvaru h (x) = x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 a k (x) = ln 2 x · (x 2 + 1) . Je zrejmé, že y = f (h (x) + k (x)).

Zvážte funkciu h(x). Toto je pomer l (x) = x 2 + 3 cos 3 (2 x + 1) + 7 k m (x) = e x 2 + 3 3

Máme, že l (x) = x 2 + 3 cos 2 (2 x + 1) + 7 = n (x) + p (x) je súčet dvoch funkcií n (x) = x 2 + 7 a p ( x) = 3 cos 3 (2 x + 1), kde p (x) = 3 p 1 (p 2 (p 3 (x))) je komplexná funkcia s číselným koeficientom 3 a p 1 je funkcia kocky, p 2 pomocou kosínusovej funkcie, p 3 (x) = 2 x + 1 pomocou lineárnej funkcie.

Zistili sme, že m (x) = e x 2 + 3 3 = q (x) + r (x) je súčet dvoch funkcií q (x) = e x 2 a r (x) = 3 3, kde q (x) = q 1 (q 2 (x)) je komplexná funkcia, q 1 je funkcia s exponenciálou, q 2 (x) = x 2 je mocninová funkcia.

To ukazuje, že h (x) = l (x) m (x) = n (x) + p (x) q (x) + r (x) = n (x) + 3 p 1 (p 2 ( p 3 (x))) q 1 (q 2 (x)) + r (x)

Pri prechode na výraz v tvare k (x) = ln 2 x · (x 2 + 1) = s (x) · t (x) je zrejmé, že funkcia je prezentovaná v tvare komplexu s ( x) = ln 2 x = s 1 ( s 2 (x)) s racionálnym celým číslom t (x) = x 2 + 1, kde s 1 je funkcia druhej mocniny a s 2 (x) = ln x je logaritmická s základ e.

Z toho vyplýva, že výraz bude mať tvar k (x) = s (x) · t (x) = s 1 (s 2 (x)) · t (x).

Potom to dostaneme

y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x (x 2 + 1) = = f n (x) + 3 p 1 (p 2 (p 3 ( x))) q 1 (q 2 (x)) = r (x) + s 1 (s 2 (x)) t (x)

Na základe štruktúr funkcie sa ukázalo, ako a aké vzorce je potrebné použiť na zjednodušenie výrazu pri jeho diferenciácii. Pre oboznámenie sa s takýmito problémami a pre koncepciu ich riešenia je potrebné obrátiť sa k bodu diferencovania funkcie, teda hľadania jej derivácie.

Ak si všimnete chybu v texte, zvýraznite ju a stlačte Ctrl+Enter

Veľmi ľahko zapamätateľné.

No, nechoďme ďaleko, okamžite zvážime inverznú funkciu. Ktorá funkcia je inverzná k exponenciálnej funkcii? Logaritmus:

V našom prípade je základom číslo:

Takýto logaritmus (to znamená logaritmus so základom) sa nazýva „prirodzený“ a používame preň špeciálny zápis: namiesto toho píšeme.

Čomu sa to rovná? Samozrejme, .

Derivácia prirodzeného logaritmu je tiež veľmi jednoduchá:

Príklady:

  1. Nájdite deriváciu funkcie.
  2. Aká je derivácia funkcie?

Odpovede: Exponenciálny a prirodzený logaritmus sú z derivačnej perspektívy jedinečne jednoduché funkcie. Exponenciálne a logaritmické funkcie s akoukoľvek inou bázou budú mať inú deriváciu, ktorú budeme analyzovať neskôr, keď si prejdeme pravidlá diferenciácie.

Pravidlá diferenciácie

Pravidlá čoho? Opäť nový termín, opäť?!...

Diferenciácia je proces hľadania derivátu.

To je všetko. Ako inak môžete nazvať tento proces jedným slovom? Nie derivácia... Matematici nazývajú diferenciál rovnakým prírastkom funkcie at. Tento výraz pochádza z latinského differentia – rozdiel. Tu.

Pri odvodzovaní všetkých týchto pravidiel použijeme dve funkcie, napríklad a. Budeme tiež potrebovať vzorce pre ich prírastky:

Celkovo existuje 5 pravidiel.

Konštanta je vyňatá z derivačného znamienka.

Ak - nejaké konštantné číslo (konštanta), potom.

Je zrejmé, že toto pravidlo funguje aj pre rozdiel: .

Poďme to dokázať. Nech je to tak, alebo jednoduchšie.

Príklady.

Nájdite deriváty funkcií:

  1. v bode;
  2. v bode;
  3. v bode;
  4. v bode.

Riešenia:

  1. (derivácia je vo všetkých bodoch rovnaká, keďže ide o lineárnu funkciu, pamätáte?);

Derivát produktu

Tu je všetko podobné: predstavme si novú funkciu a nájdime jej prírastok:

odvodený:

Príklady:

  1. Nájdite derivácie funkcií a;
  2. Nájdite deriváciu funkcie v bode.

Riešenia:

Derivácia exponenciálnej funkcie

Teraz sú vaše znalosti dostatočné na to, aby ste sa naučili nájsť deriváciu akejkoľvek exponenciálnej funkcie, a nielen exponentov (zabudli ste, čo to je?).

Takže, kde je nejaké číslo.

Deriváciu funkcie už poznáme, takže skúsme našu funkciu zredukovať na nový základ:

Na to použijeme jednoduché pravidlo: . potom:

No podarilo sa. Teraz skúste nájsť deriváciu a nezabudnite, že táto funkcia je zložitá.

Stalo?

Tu sa presvedčte:

Ukázalo sa, že vzorec je veľmi podobný derivátu exponentu: ako to bolo, zostáva rovnaký, objavil sa iba faktor, ktorý je len číslom, ale nie premennou.

Príklady:
Nájdite deriváty funkcií:

Odpovede:

To je len číslo, ktoré sa bez kalkulačky nedá vypočítať, teda nedá sa zapísať v jednoduchšej forme. Preto ho v odpovedi necháme v tejto podobe.

    Všimnite si, že tu je kvocient dvoch funkcií, takže použijeme zodpovedajúce pravidlo diferenciácie:

    V tomto príklade súčin dvoch funkcií:

Derivácia logaritmickej funkcie

Tu je to podobné: deriváciu prirodzeného logaritmu už poznáte:

Preto nájsť ľubovoľný logaritmus s inou základňou, napríklad:

Tento logaritmus musíme zredukovať na základňu. Ako zmeníte základ logaritmu? Dúfam, že si pamätáte tento vzorec:

Len teraz namiesto toho napíšeme:

Menovateľ je jednoducho konštanta (konštantné číslo, bez premennej). Derivát sa získa veľmi jednoducho:

Deriváty exponenciálnych a logaritmických funkcií sa v jednotnej štátnej skúške takmer nikdy nenachádzajú, ale nebude zbytočné ich poznať.

Derivácia komplexnej funkcie.

Čo je to „komplexná funkcia“? Nie, toto nie je logaritmus ani arkustangens. Tieto funkcie môžu byť ťažko pochopiteľné (hoci ak sa vám zdá logaritmus ťažký, prečítajte si tému „Logaritmy“ a budete v poriadku), ale z matematického hľadiska slovo „komplexný“ neznamená „ťažký“.

Predstavte si malý dopravný pás: dvaja ľudia sedia a robia nejaké akcie s nejakými predmetmi. Napríklad prvý zabalí čokoládovú tyčinku do obalu a druhý ju previaže stuhou. Výsledkom je zložený objekt: čokoládová tyčinka zabalená a previazaná stuhou. Ak chcete zjesť čokoládovú tyčinku, musíte vykonať opačné kroky v opačnom poradí.

Vytvorme podobný matematický reťazec: najprv nájdeme kosínus čísla a potom odmocnime výsledné číslo. Takže dostaneme číslo (čokoláda), nájdem jeho kosínus (obal) a potom utvoríte štvorec, čo som dostal (previažte to stuhou). Čo sa stalo? Funkcia. Toto je príklad komplexnej funkcie: keď na zistenie jej hodnoty vykonáme prvú akciu priamo s premennou a potom druhú akciu s tým, čo vyplynulo z prvej.

Inými slovami, komplexná funkcia je funkcia, ktorej argumentom je iná funkcia: .

Pre náš príklad, .

Rovnaké kroky môžeme jednoducho urobiť v opačnom poradí: najprv to odmocni a ja potom hľadám kosínus výsledného čísla: . Je ľahké uhádnuť, že výsledok bude takmer vždy iný. Dôležitá vlastnosť komplexných funkcií: keď sa zmení poradie akcií, funkcia sa zmení.

Druhý príklad: (to isté). .

Akcia, ktorú urobíme ako posledná, bude zavolaná „vonkajšia“ funkcia, a akcia vykonaná ako prvá - podľa toho „vnútorná“ funkcia(sú to neformálne názvy, používam ich len na vysvetlenie látky jednoduchým jazykom).

Skúste sami určiť, ktorá funkcia je externá a ktorá interná:

Odpovede: Oddelenie vnútorných a vonkajších funkcií je veľmi podobné zmene premenných: napríklad vo funkcii

  1. Akú akciu vykonáme ako prvú? Najprv vypočítame sínus a až potom ho dáme na kocku. To znamená, že ide o vnútornú funkciu, ale vonkajšiu.
    A pôvodnou funkciou je ich zloženie: .
  2. Vnútorné: ; vonkajší: .
    Vyšetrenie: .
  3. Vnútorné: ; vonkajší: .
    Vyšetrenie: .
  4. Vnútorné: ; vonkajší: .
    Vyšetrenie: .
  5. Vnútorné: ; vonkajší: .
    Vyšetrenie: .

Zmeníme premenné a dostaneme funkciu.

Teraz vyberieme našu čokoládovú tyčinku a budeme hľadať derivát. Postup je vždy opačný: najprv hľadáme deriváciu vonkajšej funkcie, potom výsledok vynásobíme deriváciou vnútornej funkcie. Vo vzťahu k pôvodnému príkladu to vyzerá takto:

Ďalší príklad:

Takže konečne sformulujme oficiálne pravidlo:

Algoritmus na nájdenie derivácie komplexnej funkcie:

Zdá sa to jednoduché, však?

Pozrime sa na príklady:

Riešenia:

1) Interné: ;

Vonkajšie: ;

2) Interné: ;

(Len to teraz neskúšajte odstrihnúť! Spod kosínusu nič nevychádza, pamätáte?)

3) Interné: ;

Vonkajšie: ;

Okamžite je jasné, že ide o trojúrovňovú komplexnú funkciu: koniec koncov, toto je už sama o sebe zložitá funkcia a extrahujeme z nej aj koreň, to znamená, že vykonáme tretiu akciu (vložíme čokoládu do obalu a so stuhou v kufríku). Nie je však dôvod na strach: túto funkciu budeme stále „rozbaľovať“ v rovnakom poradí ako obvykle: od konca.

To znamená, že najprv diferencujeme koreň, potom kosínus a až potom výraz v zátvorkách. A potom to všetko vynásobíme.

V takýchto prípadoch je vhodné akcie očíslovať. To znamená, predstavme si, čo vieme. V akom poradí vykonáme akcie na výpočet hodnoty tohto výrazu? Pozrime sa na príklad:

Čím neskôr sa akcia vykoná, tým „externejšia“ bude príslušná funkcia. Postupnosť akcií je rovnaká ako predtým:

Tu je hniezdenie vo všeobecnosti 4-úrovňové. Stanovme si postup.

1. Radikálne vyjadrenie. .

2. Koreň. .

3. Sínus. .

4. Štvorec. .

5. Daj to všetko dokopy:

DERIVÁT. STRUČNE O HLAVNÝCH VECIACH

Derivácia funkcie- pomer prírastku funkcie k prírastku argumentu pre nekonečne malý prírastok argumentu:

Základné deriváty:

Pravidlá rozlišovania:

Konštanta je vyňatá z derivačného znamienka:

Derivát súčtu:

Derivát produktu:

Derivát kvocientu:

Derivácia komplexnej funkcie:

Algoritmus na nájdenie derivácie komplexnej funkcie:

  1. Definujeme „internú“ funkciu a nájdeme jej deriváciu.
  2. Definujeme „vonkajšiu“ funkciu a nájdeme jej deriváciu.
  3. Výsledky prvého a druhého bodu vynásobíme.

Na ktorom sme skúmali najjednoduchšie deriváty a tiež sa oboznámili s pravidlami diferenciácie a niektorými technickými technikami na hľadanie derivátov. Ak teda nie ste veľmi dobrí s derivátmi funkcií alebo niektoré body v tomto článku nie sú úplne jasné, prečítajte si najprv vyššie uvedenú lekciu. Nalaďte sa prosím vážne - materiál nie je jednoduchý, ale aj tak sa ho pokúsim podať jednoducho a zrozumiteľne.

V praxi sa musíte veľmi často zaoberať deriváciou komplexnej funkcie, dokonca by som povedal, že takmer vždy, keď dostanete úlohy na nájdenie derivácií.

Pozrime sa na tabuľku pri pravidle (č. 5) na diferenciáciu komplexnej funkcie:

Poďme na to. V prvom rade si dajme pozor na vstup. Tu máme dve funkcie - a , pričom funkcia je, obrazne povedané, vnorená do funkcie . Funkcia tohto typu (keď je jedna funkcia vnorená do inej) sa nazýva komplexná funkcia.

Zavolám funkciu vonkajšia funkcia a funkciu – interná (alebo vnorená) funkcia.

! Tieto definície nie sú teoretické a nemali by sa objaviť v konečnom návrhu zadaní. Neformálne výrazy „vonkajšia funkcia“, „vnútorná“ funkcia používam len preto, aby som vám uľahčil pochopenie materiálu.

Ak chcete objasniť situáciu, zvážte:

Príklad 1

Nájdite deriváciu funkcie

Pod sínusom nemáme len písmeno „X“, ale celý výraz, takže nájdenie derivátu hneď z tabuľky nebude fungovať. Všimli sme si tiež, že tu nie je možné použiť prvé štyri pravidlá, zdá sa, že existuje rozdiel, ale faktom je, že sínus nemožno „roztrhať na kúsky“:

V tomto príklade je už z mojich vysvetlení intuitívne jasné, že funkcia je komplexná funkcia a polynóm je vnútorná funkcia (vloženie) a vonkajšia funkcia.

Prvý krokčo musíte urobiť pri hľadaní derivácie komplexnej funkcie je to pochopiť, ktorá funkcia je vnútorná a ktorá vonkajšia.

Kedy jednoduché príklady Zdá sa jasné, že pod sínus je vložený polynóm. Ale čo ak všetko nie je zrejmé? Ako presne určiť, ktorá funkcia je vonkajšia a ktorá vnútorná? Na tento účel navrhujem použiť nasledujúcu techniku, ktorú je možné vykonať mentálne alebo v koncepte.

Predstavme si, že potrebujeme vypočítať hodnotu výrazu at na kalkulačke (namiesto jednej môže byť ľubovoľné číslo).

Čo vypočítame ako prvé? Po prvé budete musieť vykonať nasledujúcu akciu: , preto bude polynóm internou funkciou:

Po druhé bude potrebné nájsť, takže sínus – bude vonkajšia funkcia:

Po nás VYPREDANÉ s vnútornými a vonkajšími funkciami je čas uplatniť pravidlo diferenciácie komplexných funkcií .

Začnime sa rozhodovať. Z lekcie Ako nájsť derivát? pamätáme si, že návrh riešenia akejkoľvek derivácie vždy začína takto - výraz uzavrieme do zátvoriek a vpravo hore umiestnime ťah:

Najprv nájdeme deriváciu vonkajšej funkcie (sínus), pozrieme sa na tabuľku derivácií elementárnych funkcií a všimneme si, že . Všetky vzorce tabuľky sú použiteľné aj vtedy, ak je „x“ nahradené zložitým výrazom, v tomto prípade:

Upozorňujeme, že vnútorná funkcia sa nezmenil, nedotýkame sa ho.

No to je celkom zrejmé

Výsledok použitia vzorca vo finálnej podobe to vyzerá takto:

Konštantný faktor je zvyčajne umiestnený na začiatku výrazu:

Ak dôjde k nejakému nedorozumeniu, zapíšte si riešenie na papier a znova si prečítajte vysvetlenia.

Príklad 2

Nájdite deriváciu funkcie

Príklad 3

Nájdite deriváciu funkcie

Ako vždy píšeme:

Poďme zistiť, kde máme vonkajšiu funkciu a kde vnútornú. Aby sme to dosiahli, snažíme sa (mentálne alebo v koncepte) vypočítať hodnotu výrazu v . Čo by ste mali urobiť ako prvé? Najprv musíte vypočítať, čomu sa rovná základňa: preto je polynóm vnútorná funkcia:

A až potom sa vykoná umocnenie, preto je výkonová funkcia vonkajšou funkciou:

Podľa vzorca , najprv musíte nájsť deriváciu vonkajšej funkcie, v tomto prípade stupeň. Požadovaný vzorec hľadáme v tabuľke: . Znova opakujeme: akýkoľvek tabuľkový vzorec platí nielen pre „X“, ale aj pre komplexný výraz. Teda výsledok uplatnenia pravidla pre diferenciáciu komplexnej funkcie Ďalšie:

Opäť zdôrazňujem, že keď vezmeme deriváciu vonkajšej funkcie, naša vnútorná funkcia sa nezmení:

Teraz už len zostáva nájsť veľmi jednoduchú deriváciu vnútornej funkcie a trochu upraviť výsledok:

Príklad 4

Nájdite deriváciu funkcie

Toto je príklad, ktorý môžete vyriešiť sami (odpoveď na konci hodiny).

Aby ste upevnili svoje chápanie derivácie komplexnej funkcie, uvediem príklad bez komentárov, skúste na to prísť sami, dôvod, kde je vonkajšia a kde vnútorná funkcia, prečo sú úlohy riešené týmto spôsobom?

Príklad 5

a) Nájdite deriváciu funkcie

b) Nájdite deriváciu funkcie

Príklad 6

Nájdite deriváciu funkcie

Tu máme koreň a na rozlíšenie koreňa musí byť reprezentovaný ako mocnosť. Najprv teda uvedieme funkciu do tvaru vhodnej na diferenciáciu:

Analýzou funkcie dospejeme k záveru, že súčet troch členov je vnútorná funkcia a umocnenie je vonkajšia funkcia. Uplatňujeme pravidlo diferenciácie komplexných funkcií :

Stupeň opäť reprezentujeme ako radikál (odmocninu) a pre deriváciu vnútornej funkcie aplikujeme jednoduché pravidlo na derivovanie súčtu:

Pripravený. Môžete tiež zredukovať výraz na spoločného menovateľa v zátvorkách a zapísať všetko ako jeden zlomok. Je to, samozrejme, krásne, ale keď získate ťažkopádne dlhé deriváty, je lepšie to nerobiť (je ľahké sa zmiasť, urobiť zbytočnú chybu a pre učiteľa bude nepohodlné to kontrolovať).

Príklad 7

Nájdite deriváciu funkcie

Toto je príklad, ktorý môžete vyriešiť sami (odpoveď na konci hodiny).

Je zaujímavé poznamenať, že niekedy namiesto pravidla na diferenciáciu komplexnej funkcie môžete použiť pravidlo na diferenciáciu kvocientu , ale takéto riešenie bude vyzerať ako nezvyčajná zvrátenosť. Tu typický príklad:

Príklad 8

Nájdite deriváciu funkcie

Tu môžete použiť pravidlo diferenciácie kvocientu , ale je oveľa výnosnejšie nájsť deriváciu pomocou pravidla diferenciácie komplexnej funkcie:

Pripravíme funkciu na diferenciáciu - posunieme mínus z derivačného znamienka a zvýšime kosínus do čitateľa:

Kosínus je vnútorná funkcia, umocňovanie je vonkajšia funkcia.
Využime naše pravidlo :

Nájdeme deriváciu vnútornej funkcie a resetujeme kosínus späť:

Pripravený. V uvažovanom príklade je dôležité nenechať sa zmiasť v znameniach. Mimochodom, skúste to vyriešiť pomocou pravidla , odpovede sa musia zhodovať.

Príklad 9

Nájdite deriváciu funkcie

Toto je príklad, ktorý môžete vyriešiť sami (odpoveď na konci hodiny).

Doteraz sme sa zaoberali prípadmi, keď sme mali iba jedno hniezdenie v komplexnej funkcii. V praktických úlohách sa často dajú nájsť odvodeniny, kde sa ako hniezdiace bábiky jedna do druhej vnorí naraz 3 alebo aj 4-5 funkcií.

Príklad 10

Nájdite deriváciu funkcie

Poďme pochopiť prílohy tejto funkcie. Skúsme vypočítať výraz pomocou experimentálnej hodnoty. Ako by sme rátali s kalkulačkou?

Najprv musíte nájsť , čo znamená, že arcsínus je najhlbšie vloženie:

Tento arcsínus jednej by sa potom mal odmocniť:

A nakoniec zdvihneme sedem na mocninu:

To znamená, že v tomto príklade máme tri rôzne funkcie a dve vloženia, pričom najvnútornejšia funkcia je arcsínus a najvzdialenejšia funkcia je exponenciálna funkcia.

Začnime sa rozhodovať

Podľa pravidla Najprv musíte vziať deriváciu vonkajšej funkcie. Pozrieme sa na tabuľku derivácií a nájdeme deriváciu exponenciálnej funkcie: Jediný rozdiel je v tom, že namiesto „x“ máme komplexný výraz, ktorý nepopiera platnosť tohto vzorca. Takže výsledok aplikácie pravidla na diferenciáciu komplexnej funkcie Ďalšie.



Páčil sa vám článok? Zdieľajte so svojimi priateľmi!
Bol tento článok nápomocný?
Áno
Nie
Ďakujem za spätnú väzbu!
Niečo sa pokazilo a váš hlas nebol započítaný.
Ďakujem. Vaša správa bola odoslaná
Našli ste chybu v texte?
Vyberte ho, kliknite Ctrl + Enter a všetko napravíme!